A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Varenne, F.

Paper Title Page
WEPLT075 Status Report on the Beam Dynamics Developments for the SPIRAL 2 Project 2020
 
  • R. Duperrier, D. Uriot
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • P. Bertrand, F. Varenne
    GANIL, Caen
  • J.-L. Biarrotte
    IPN, Orsay
  • J.-M. De Conto
    ISN, Grenoble
  • E. Froidefond
    LPSC, Grenoble
  • N. Pichoff
    CEA/DAM, Bruyères-le-Châtel
 
  The driver for the SPIRAL 2 project aims to accelerate a 5 mA D+ beam up to 20 A.MeV and a 1 mA beam for Q/A=1/3 up to 14.5 A.MeV. It operates in a continuous wave regime (cw), is designed for a maximum efficiency in the transmission of intense beams. Recent studies have led to change the reference design. The current design consists in an injector (ECR sources + LEBTs with the possibility to inject from several sources + a Radio Frequency Quadrupole) followed by a superconducting section based on an array of independently phased cavities where the transverse focalisation is performed by warm quadrupoles. This paper presents the beam dynamics studies associated to these new choices, the HEBT design and the fast chopping in the MEBT.  
TUPLT052 GANIL Status Report 1270
 
  • F. Chautard, J.L. Baelde, C. Barue, C. Berthe, A. Colombe, L. David, P. Dolegieviez, B. Jacquot, C. Jamet, P. Leherissier, R. Leroy, M.H. Moscatello, E. Petit, A. Savalle, G. Sénécal, F. Varenne
    GANIL, Caen
 
  The GANIL facility (Caen, France) is dedicated to the acceleration of heavy ion beams for nuclear physics, atomic physics, radiobiology and material irradiation. The production of radioactive ion beams for nuclear physics studies represents the main part of the activity. The in-flight fragmentation method was already used, since 1994, with the SISSI device. Since September 2001, SPIRAL, the Radioactive Ion Beam Facility at GANIL, delivers radioactive species produced by the ISOL method. The heavy ion beams of GANIL are sent onto a target and source assembly, and the radioactive beams are accelerated up to a maximum energy of 25 MeV/u by the cyclotron CIME. The operation and the running statistics of GANIL-SPIRAL are presented, with particular attention to the first SPIRAL beams. Few results about the cyclotron CIME, as the mass selection and tuning principle are summarized. The recent developments for increasing stable beams intensities, up to a factor 13 for argon, for use with SPIRAL, SISSI, or the LISE spectrometer, are presented. Considering the future of GANIL, SPIRAL II projects aims to produce high intensity secondary beams, by fission induced with a 5 mA deuteron beam in an uranium target.