A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Van Rienen, U.

Paper Title Page
THPLT048 Progress in 3D Space-charge Calculations in the GPT Code 2589
 
  • G. Pöplau, U. Van Rienen
    Rostock University, Faculty of Engineering, Rostock
  • M.J. de Loos
    PP, Soest
  • S.B. van der Geer
    TUE, Eindhoven
 
  The mesh-based 3D space-charge routine in the GPT (General Particle Tracer, Pulsar Physics) code scales linearly with the number of particles in terms of CPU time and allows a million particles to be tracked on a normal PC. The crucial ingredient of the routine is a non-equidistant multi-grid Poisson solver to calculate the electrostatic potential in the rest frame of the bunch. The solver has been optimized for very high and very low aspect ratio bunches present in state-of-the-art high-brightness electron accelerators. In this paper, we explore the efficiency and accuracy of the calculations as function of meshing strategy and boundary conditions.