A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Valentinov, A.G.

Paper Title Page
MOPLT086 Upgrading the Control System at KCSR 734
 
  • I.V. Krylov, V. Korchuganov, L.A. Moseiko, N.I. Moseiko, V.A. Novikov, A.G. Valentinov, Y.L. Yupinov
    RRC Kurchatov Institute, Moscow
 
  Till now Kurchatov Centre of Synchrotron Radiation facility control system is based on a CAMAC-oriented computers network. In this paper the project of upgrading and results of prototyping of the new equipment is submitted. Upgrading includes two levels. First, it is possible to create the modern CAMAC crate-controller, connected with standard network. More advanced variant will consist in replacement of CAMAC modules with the embedded controllers of equipment. Second level is a creation of a local managing network of personal computers, as consoles of the control system. The control system is functionally divided into four levels: 1) the controllers managing in a real-time mode by the executive equipment; 2) the workstations which are supporting the link with controllers by CAN-network; 3) the server of applications containing a dynamic database; 4) the PCs network for users applications. Examples of realisation of the software are presented.  
THPKF051 The Status-2004 of the KURCHATOV Center of SR 2383
 
  • V. Korchuganov, V. Korchuganov, Y.V. Krylov, V.V. Kvardakov, D.G. Odintsov, V. Ushkov, A.G. Valentinov, Y.L. Yupinov, S.I. Zheludeva
    RRC Kurchatov Institute, Moscow
  • M.V. Kovalchuk
    RAS/A.V.Shubnikov, Moscow
 
  Kurchatov Synchrotron Radiation Source (KCSR) began the work as a first dedicated synchrotron radiation facility in Russia in 1999. The facility includes two storage rings: 450 MeV SIBERIA-1 and 2.5 GeV SIBERIA-2 and is intended for experiments in the range of SR from VUV up to hard X-ray. Large progress was achieved in increasing SIBERIA-2 stored current during last year. Now maximum current at injection energy is more than 220 mA and it equals to 140 mA at operation energy. The SR dose is rising fast and the life time is also grown because of the outgassing of vacuum chamber by SR. Consequently, after the only one electrons accumulation the work during 24 hours on experimental stations becomes possible with SR beams unbroken. Eight experimental stations with SR beam lines and hutches were mounted and are now in routine operation with SR from bending magnets in experimental hall of Siberia-2. We are installing next beam lines there. SIBERIA-1 also has experimental hall with three beam lines and three experimental stations being in operation. The report describes the current work and the plans on the storage rings. It informs about achieved consumer parameters of an electron beam and status of SR stations.