A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Uesugi, T.

Paper Title Page
TUPLT073 Observation of Coupling Resonance in HIMAC Synchrotron 1321
 
  • T. Uesugi, T. Fujisawa, K. Noda, S. Shibuya, D. Tann, H. Uchiyama
    NIRS, Chiba-shi
  • Y. Hashimoto
    KEK, Ibaraki
  • I.N. Meshkov, E. Syresin
    JINR, Dubna, Moscow Region
 
  Coupling resonance was observed at operating points near to Qx-Qy=1. Two-dimensional profile of a beam at its equilibrium was measured, and it was found that the beam was inclined in transverse when the operating point is near to the resonance condition. We will present the detail of the measurement and the results.  
WEPLT102 Electron Cooling Experiments at HIMAC Synchrotron 2086
 
  • K. Noda, T. Furukawa, T. Honma, S. Shibuya, D. Tan, T. Uesugi
    NIRS, Chiba-shi
  • T. Iwashima
    AEC, Chiba
  • I.N. Meshkov, E. Syresin
    JINR, Dubna, Moscow Region
  • S. Ninomiya
    RCNP, Osaka
 
  In the HIMAC synchrotron, the electron cooling experiments have been carried out since 2000 in order to develop new technologies in heavy-ion therapy and related research. Among of them, especially, the cool-stacking method has been studied to increase the intensity of heavy ions such as Fe and Ni in order to study the risk estimation of the radiation exposure in space. The simulation was carried out in order to optimize the stacking intensity under various the injection periods. In addition, the beam heating by the RF-KO and the clearing the secondary ion in the cooler were applied to avoid the instability occurred when the beam density became high. We will report the experiment results.  
THPLT066 Commissioning of 150MeV FFAG Synchronisation 2640
 
  • Y. Yonemura, M. Matoba
    Kyushu University, Fukuoka
  • M. Aiba, M. Sugaya
    University of Tokyo, Tokyo
  • S. Machida, Y. Mori, A. Muto, J. Nakano, C. Ohmori, I. Sakai, Y. Sato, A. Takagi, T. Yokoi, M. Yoshii, M. Yoshimoto, Y. Yuasa
    KEK, Ibaraki
  • T. Uesugi
    NIRS, Chiba-shi
  • A. Yamazaki
    LNS, Sendai
 
  A 150MeV proton FFAG (Fixed Field Alternating Gradient) synchrotron has been constructed to be a prototype for various applications such as proton beam therapy. At the moment, all the components are assembled, and multi-turn injection and beam storage were successfully performed. We are in the phase of beam acceleration up to final energy and expect the beam extraction in a few months. In this paper, beam commissioning results such as multi-turn injection, orbit correction, tune survey and optimization of RF gymnastics will be presented.