A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Tsutsui, H.

Paper Title Page
MOPLT005 An Improved Collimation System for the LHC 536
 
  • R.W. Assmann, O. Aberle, A. Bertarelli, H.-H. Braun, M. Brugger, L. Bruno, O.S. Brüning, S. Calatroni, E. Chiaveri, B. Dehning, A. Ferrari, B. Goddard, E.B. Holzer, J.-B. Jeanneret, J.M. Jimenez, V. Kain, M. Lamont, M. Mayer, E. Métral, R. Perret, S. Redaelli, T. Risselada, G. Robert-Demolaize, S. Roesler, F. Ruggiero, R. Schmidt, D. Schulte, P. Sievers, V. Vlachoudis, L. Vos, G. Vossenberg, J. Wenninger
    CERN, Geneva
  • I.L. Ajguirei, I. Baishev, I.L. Kurochkin
    IHEP Protvino, Protvino, Moscow Region
  • D. Kaltchev
    TRIUMF, Vancouver
  • H. Tsutsui
    SHI, Tokyo
 
  The LHC design parameters extend the maximum stored beam energy 2-3 orders of magnitude beyond present experience. The handling of the high-intensity LHC beams in a super-conducting environment requires a high-robustness collimation system with unprecedented cleaning efficiency. For gap closures down to 2mm no beam instabilities may be induced from the collimator impedance. A difficult trade-off between collimator robustness, cleaning efficiency and collimator impedance is encountered. The conflicting LHC requirements are resolved with a phased approach, relying on low Z collimators for maximum robustness and hybrid metallic collimators for maximum performance. Efficiency is further enhanced with an additional cleaning close to the insertion triplets. The machine layouts have been adapted to the new requirements. The LHC collimation hardware is presently under design and has entered into the prototyping and early testing phase. Plans for collimator tests with beam are presented.  
THPLT094 Ordered Ion Beam in Storage Rings 2712
 
  • A. Smirnov, I.N. Meshkov, A.O. Sidorin, E. Syresin, G.V. Troubnikov
    JINR, Dubna, Moscow Region
  • T. Katayama
    CNS, Saitama
  • H. Tsutsui
    SHI, Tokyo
 
  The using of crystalline ion beams can increase of the luminosity in the collider and in experiments with targets for investigation of rare radioactive isotopes. The ordered state of circulating ion beams was observed experimentally at several storage rings. In this report a new criteria of the beam orderliness are derived and verified with BETACOOL code with using molecular dynamics technique. The sudden reduction of momentum spread observed on a few rings is described with this code. The simulation shows a good agreement with the experimental results. The code has then been used to calculate characteristics of the ordered state of ion beams for ion rings which will have experimental programs for the study of crystalline beams. A new strategy of the cooling process is proposed which permits to increase the linear density of the ordered ion beam.  
THPLT062 Alternating-phase-focused Linac for an Injector of Medical Synchrotrons 2628
 
  • Y. Iwata, T. Fujisawa, T. Furukawa, T. Kanai, M. Kanazawa, N. Kanematsu, M. Komori, S. Minohara, T. Murakami, M. Muramatsu, K. Noda, M. Torikoshi, S. Yamada
    NIRS, Chiba-shi
  • Y.F. Fujii, T. Mitsumoto, H. Tsutsui
    SHI, Tokyo
  • T. Fujimoto, H.O. Ogawa, S. Shibuya
    AEC, Chiba
  • V. Kapin
    MEPhI, Moscow
 
  Tumor therapy using Heavy Ion Medical Accelerator in Chiba (HIMAC) has been made over ten years at National Institute of Radiological Sciences (NIRS). Due to the successful clinical results, the project on developing compact medical accelerators for the tumor therapy has been started. To design these compact facilities, the size of a linac as well as the construction and operation costs is important. To satisfy these requirements, we propose Alternating-Phase-Focused (APF) linac using an Interdigital H-mode cavity. Since the axial and radial focusing of beam is made just with the acceleration rf field, no additional focusing elements is needed for the APF linac. This feature would make the costs lower than those of conventional linacs. The practical design of the APF linac will be presented.