A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Tommasini, D.

Paper Title Page
WEPKF017 The 5 T Superconducting Undulator for the LHC Synchrotron Radiation Profile Monitor 1630
 
  • R. Maccaferri, M. Facchini, R. Jung, D. Tommasini, W.  Venturini Delsolaro
    CERN, Geneva
 
  A Synchrotron Radiation Profile Monitor will be used in the LHC to measure the beam profiles from the injection energy of 450 GeV to the nominal energy of 7 TeV. The radiation will be provided by a sequence of two separate magnets: a two-periods 5 T superconducting undulator and the beam separation dipole D3. After a short description of the profile monitor layout, the paper reviews the electromagnetic and mechanical design of the undulator, and reports on the fabrication and cold test results of a first half period prototype.Finally, for the LHC operation with lead ion beams,a proposal for a monitor sensitivity upgrade by using a 12 T. superconducting undulator is presented and discussed.  
WEPLT016 Logistics of LHC Cryodipoles: from Simulation to Storage Management 1852
 
  • K. Foraz, B. Nicquevert, D. Tommasini
    CERN, Geneva
 
  The particles traveling in the Large Hadron Collider are guided by superconducting magnets. The main magnets (cryodipoles) are 16 m long, 30 tons objects placed with accuracies of few tenths of mm and therefore imposing challenging requirements for handling and transportation. Numerous contracts are constraining the production and installation of these cryodipoles. These contracts have been rated according to the baseline schedule, based on a "just in time" scheme. However the complexity of the construction and the time required to fully test the cryodipoles before installation in the LHC required to decouple as much as possible each contract from the others' evolutions and imposed temporary storage between different assembly and test steps. Therefore a tool simulating the logistics was created in order to determine the number of cryodipoles to store at the various stages of their production. In this paper the organization of cryodipole flow and the main challenges of logistics are analyzed on the basis of the planning of each main step before installation. Finally the solutions implemented for storage, handling and transportation are presented and discussed.