A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Thieberger, P.

Paper Title Page
MOPLT175 A Method to Measure the Focusing Properties (R_Matrix) of a Magnet 935
 
  • N. Tsoupas, L. Ahrens, K.A. Brown, D. Gassner, J. Glenn, Y.Y. Lee, T. Roser, P. Thieberger, J. Wei
    BNL, Upton, Long Island, New York
 
  We discuss a method that may be used to measure the focusing properties of a magnet. This method may prove valuable when applied to non-conventional magnets that deviate from the usual dipole magnets or other multipole magnets which are commonly used in a synchrotron. In this category of non-conventional magnets, fall special magnets, which come under the name Snakes. Such magnets are being used in synchrotron accelerators[*,**] to introduce artificial spin resonances to help overcome the intrinsic and/or imperfection spin resonances. This method of measuring the focusing properties of a magnet requires the use of low energy and high rigidity heavy-ions which may be obtained from the BNL Tandem accelerator.In brief the method consists on, injecting low emittance beamlets of lightly stripped heavy ions into a magnet and measuring the coordinates, of these narrowbeamlets, at the entrance and exit of the magnet.From the measurement of these coordinates of the narrowbeamlets we can deduce information on the R matrix and higher order matrix elements that define the focusing properties of the magnet.

* T. Roser, AIP Conf. Proc. 187 (1988) 1221** H.Huang, et. al. Phys. Rev. Lett. 73 (1994) 2982

 
MOPLT178 RHIC Pressure Rise 944
 
  • S.Y. Zhang, J. Alessi, M. Bai, M. Blaskiewicz, P. Cameron, K.A. Drees, W. Fischer, R.P. Fliller III, D. Gassner, J. Gullotta, P. He, H.-C. Hseuh, H. Huang, U. Iriso, R. Lee, Y. Luo, W.W. MacKay, C. Montag, B. Oerter, S. Peggs, F.C. Pilat, V. Ptitsyn, T. Roser, T. Satogata, L. Smart, P. Thieberger, D. Trbojevic, J. Van Zeijts, L. Wang, J. Wei, K. Zeno
    BNL, Upton, Long Island, New York
 
  Beam induced pressure rise remains an intensity limit at the RHIC for both heavy ion and polarized proton operations. The beam injection pressure rise at warm sections has been diagnosed due to electron cloud effect. In addition, pressure rise of heavy ion operation at the beam transition has caused experiment background problem in deuteron-gold run, and it is expected to take place in gold-gold run at high intensities. This type of pressure rise is related to beam momentum spread, and the electron cloud seems not dominant. Extensive approaches for both diagnosis and looking-for-remedies are undergoing in the current gold operation, RUN 4. Results of beam scrubbing, NEG pipe in RHIC ring, beam scraping test of ion desorption, beam momentum effect at the transition, beam gap effect, solenoid effect, and NEG pipe ion desorption test stand will be presented.