A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Thibus, J.

Paper Title Page
TUPLT030 Numerical Simulations for the Frankfurt Funneling Experiment 1210
 
  • J. Thibus, A. Schempp
    IAP, Frankfurt-am-Main
 
  High beam currents are necessary for heavy ion driven fusion (HIF) or XADS. To achieve these high beam currents several ion beams are combined at low energies to one beam using the funneling technique. In each stage a r.f. funneling deflector bunches two accelerated beam lines to a common beam axis. The Frankfurt Funneling Experiment is a scaled model of the first stage of a HIF driver consisting of a Two-Beam RFQ accelerator and a funneling deflector. Our two different deflectors have to be enhanced to reduce particle losses during the funneling process. This is done with our new developed 3D simulation software DEFGEN and DEFTRA. DEFGEN generates the structure matrix and the potential distribution matrix with a Laplace 3D-solver. DEFTRA simulates ion beam bunches through the r.f. deflector. The results of the simulations of the two existing deflectors and proposals of new deflector structures will be presented.  
TUPLT032 The Frankfurt Funneling Experiment 1213
 
  • H. Zimmermann, U. Bartz, N. Mueller, A. Schempp, J. Thibus
    IAP, Frankfurt-am-Main
 
  The Frankfurt Funneling Experiment is a scaled model of the first funneling stage of a HIF driver to gather experiences in the funneling technique. It is a procedure to multiply beam currents at low energies in several stages. In each stage two beam lines are combined to a common beam line. The funneling technique is required for new proposed high current accelerator facilities like HIDIF. The main goal is to prevent emittance growth during the funneling process. Our experiment consists of two ion sources, a Two-Beam RFQ accelerator, two different funneling deflectors and a beam diagnostic equipment system. We have demonstrated the principle of funneling with both deflector types. But the measurements have shown a bad matching of the RFQ to the funneling deflector. Now with our new RFQ electrode design we achieve a special three dimensional matching to the deflector. The new results of our measurements and simulations will be presented.