A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Tarawneh, H.

  
Paper Title Page
WEPLT136 Lattice Studies For The MAX-IV Storage Rings 2152
 
  • H. Tarawneh, M. Eriksson, L.-J. Lindgren, S. Werin
    MAX-lab, Lund
  • B. Anderberg
    AMACC, Uppsala
  • E.J. Wallén
    ESRF, Grenoble
 
  The lattice for the future MAX-IV storage rings at MAX-Lab has been studied, The MAX IV facility consists of two similar rings operated at 1.5 GeV and 3 GeV electron energies, The ring consists of 12 supercells each built up by 5 unit cells and matching sections. The high periodicity of the lattice combined with the high gradients in the small gap dipole magnets yield a small emittance of 1 nm.rad, good dynamic aperture and momentum acceptance. In the matching section, a soft end dipole magnet is introduced to reduce the synchrotron radiation power hitting the upstream straight section.  
WEPLT137 Higher Order Modes in the New 100 and 500 MHz Cavities at MAX-lab 2155
 
  • H. Tarawneh, Å. Andersson, M. Bergqvist, M. Brandin, M. Eriksson, L. Malmgren
    MAX-lab, Lund
 
  The MAX-II electron storage ring operates exclusively in multi-bunch mode with all buckets filled. Damping of the longitudinal higher order mode (HOM) instabilities has successfully been provided by passive third harmonic 1.5 GHz cavities. With a new RF employing three 100 MHz capacity loaded cavities and a fifth harmonic Landau cavity installed, a study of the HOM impedances, and related threshold instability currents, is necessary. Measurements and calculations so far, are being presented.  
THOACH02 Commissioning of the 500 MeV Injector for MAX-lab 219
 
  • S. Werin, Å. Andersson, M. Bergqvist, M. Brandin, M. Demirkan, M. Eriksson, L.-J. Lindgren, L. Malmgren, H. Tarawneh, E.J. Wallén
    MAX-lab, Lund
  • B. Anderberg
    AMACC, Uppsala
  • G. Georgsson
    Danfysik A/S, Jyllinge
  • G. LeBlanc
    ASP, Melbourne
 
  A 500 MeV new injector system for the storage rings MAX I, II and III have been installed during the winter 2003-4 at MAX-lab. The system consists of two linacs at 125 MeV each, using SLED, and a recirculating system such that the electrons pass the linacs twice, thus reaching a final energy of 500 MeV. The system is injected by a thermionic RF-gun. The commissioning of the complete system will be performed in the spring 2004.  
Video of talk
Transparencies
THPKF056 The MAX IV Facility 2389
 
  • M. Eriksson, Å. Andersson, M. Bergqvist, M. Brandin, M. Demirkan, G. Georgsson, G. LeBlanc, L.-J. Lindgren, L. Malmgren, H. Tarawneh, E.J. Wallén, S. Werin
    MAX-lab, Lund
  • B. Anderberg
    AMACC, Uppsala
  • S. Biedron, S.V. Milton
    ANL, Argonne, Illinois
 
  The MAX IV facility is a planned successor of the existing MAX facility. The planned facilty is described below. It consists of two new synchrotron storage rings operated at different electron energies to cover a broad spectral region and one linac injector. The linac injector is also meant to be operated as a FEL electron source. The two rings have similar low emittance lattices and are placed on top of each other to save space. A third UV light source, MAX III, is planned to be transfered to the new facility.