A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Takano, J.

Paper Title Page
WEPLT114 Field Measurements in the AGS Warm Snake 2113
 
  • J. Takano, M. Okamura
    RIKEN, Saitama
  • R. Alforque, R. Belkin, G. Ganetis, A.K. Jain, W.W. MacKay, T. Roser, R. Thomas, J. Tuozzolo
    BNL, Upton, Long Island, New York
  • T. Hattori
    RLNR, Tokyo
 
  A new warm snake has been produced for avoiding the transverse coupling resonance in the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL). The warm snake is the world?s first normal conducting helical dipole partial snake which has a double pitch structure to allow spin rotation with no net beam offset or deflection with a single magnet. The warm snake is 2.6m long, and has a field of 1.5 Tesla for a 9 degrees spin rotation. The pitches, current density, and shims were optimized by using OPERA_3D / TOSCA. The magnetic field harmonics have been measured using a system of 51 mm long, 34 mm radius tangential coils. The axial variation of the dipole field angle agrees very well with the calculations, indicating no significant construction errors. However, the measured transfer function shows a discrepancy of 4% which may be caused by BH-curve differences, deformation of the iron and packing factor of the laminations. To correct the beam trajectory the operating current was adjusted and shims were installed on the end plates. These optimization studies, and comparison with measurements, will be shown.  
TUPLT190 Acceleration of Polarized Beams using Multiple Strong Partial Siberian Snakes 1577
 
  • T. Roser, L. Ahrens, M. Bai, E.D. Courant, J. Glenn, R.C. Gupta, H. Huang, A.U. Luccio, W.W. MacKay, N. Tsoupas, E. Willen
    BNL, Upton, Long Island, New York
  • M. Okamura, J. Takano
    RIKEN, Saitama
 
  Acceleration of polarized protons in the energy range of 5 to 25 GeV is particularly difficult since depolarizing spin resonances are strong enough to cause significant depolarization but full Siberian snakes cause intolerably large orbit excursions. Using a 20 - 30 % partial Siberian snake both imperfection and intrinsic resonances can be overcome. Such a strong partial Siberian snake was designed for the Brookhaven AGS using a dual pitch helical superconducting dipole. Multiple strong partial snakes are also discussed for spin matching at beam injection and extraction.