A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Sugiyama, E.

Paper Title Page
WEPKF041 Permanent Magnet Generating High and Variable Septum Magnetic Field and its Deterioration by Radiation 1696
 
  • T. Kawakubo, E. Nakamura, M. Numajiri
    KEK, Ibaraki
  • M. Aoki, T. Hisamura, E. Sugiyama
    NEOMAX Co., Ltd., Mishima-gun, Osaka
 
  Conventional high field septum magnet is fed by DC current or pulse current. In the case of DC, the problem of coil support is not very important, but the cooling of the coil is serious problem. While, in the case of pulse, the problem of support is much important than that of cooling. However, if the septum magnet is made of permanent magnet, those problems are dissolved. And the cost for electricity and cooling water can be exceedingly decreased. Therefore, we made the model septum magnet which has 1/4 scale of the real size and generates 1[T] with the variable range of ± 10%. The magnetic field distribution in the gap by changing the representative field is reported. When this permanent magnet is set in an accelerator, the deterioration of the permanent magnet by radiation will be serious problem. We also report the dependence of the magnetic fields generated by permanent magnet samples on accumulated radiation by various types of radiation source.  
WEPKF047 A Super Strong Adjustable Permanent Magnet for the Final Focus Quadrupole in a Linear Collider 1708
 
  • T. Mihara, Y. Iwashita
    Kyoto ICR, Uji, Kyoto
  • E. Antokhin, M. Kumada
    NIRS, Chiba-shi
  • C.M. Spencer
    SLAC, Menlo Park, California
  • E. Sugiyama
    NEOMAX Co., Ltd., Mishima-gun, Osaka
 
  A super strong magnet, which utilizes permanent magnet material and saturated iron, is considered as a candidate for the final focus quadrupole in a linear collider beamline. This modified Halbach magnet configuration can have a higher magnetic field gradient than a normal permanent magnet quadrupole (PMQ) or electromagnet. There are some issues to be solved if a PMQ is to be used as a final focus quadrupole: the variation of its strength with temperature and the need for the field strength to be deliberately changed. One can use special temperature compensation material to improve the temperature dependence with just a small decrease in field gradient compared to a magnet without temperature compensation. The required field variability can be obtained by slicing the magnet into pieces along the beamline direction and rotating these slices. Results of performance measurements on the PMQ with variable strength will be reported including the realization of the temperature compensation technique.