A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Sprehn, D.W.

Paper Title Page
TUPKF061 The SPEAR3 RF System 1084
 
  • P.A. McIntosh, S. Allison, P. Bellomo, S. Hill, V. Pacak, S. Park, J.J. Sebek, D.W. Sprehn
    SLAC, Menlo Park, California
 
  SPEAR2 was upgraded in 2003, to a new 3rd Generation Light Source (3GLS) enabling users to take better advantage of almost 100x higher brightness and flux density over its predecessor SPEAR2. As part of the upgrade, the SPEAR2 RF system has been re-vamped from its original configuration of one 200 kW klystron feeding a single 358.5 MHz, 5-cell aluminum cavity; to a 1.2 MW klystron feeding four 476.3 MHz, HOM damped copper cavities. The system installation was completed in late November 2003 and the required accelerating voltage of 3.2 MV (800 kV/cavity) was very rapidly achieved soon after. This paper details the SPEAR3 RF system configuration and its new operating requirements, highlighting its installation and subsequent successful operation.  
TUPKF063 Current Status of the Next Linear Collider X-band Klystron Development Program 1090
 
  • D.W. Sprehn, G. Caryotakis, A.A. Haase, E.N. Jongewaard, C. Pearson
    SLAC, Menlo Park, California
 
  Klystrons capable of driving accelerator sections in the Next Linear Collider have been developed at SLAC during the last decade. In addition to fourteen 50 MW solenoid-focused devices and a 50 MW Periodic Permanent Magnet focused (PPM) klystron, a 500 kV 75 MW PPM klystron was tested in 1999 to 80 MW with 3-microsecond pulses, but very low duty. Subsequent 75 MW prototypes aimed for low-cost manufacture by employing reusable focusing structures external to the vacuum, similar to a solenoid electromagnet. During the PPM klystron development, several partners (CPI, EEV and Toshiba) have participated by constructing partial or complete PPM klystrons. After early failures during testing of the first two devices, SLAC has recently tested this design (XP3-3) to the full NLC specifications of 75 MW, 1.6 microseconds pulse length, and 120 Hz. This 14.4 kW operation came with a tube efficiency of 50%. The XP3 3 average and peak output power, together with the focusing method, arguably makes it the most advanced high power klystron ever built anywhere in the world. Design considerations and the latest testing results for these latest prototypes will be presented.