A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Spiller, P.J.

Paper Title Page
TUPLT020 High Intensity Uranium Operation in SIS18 1180
 
  • P.J. Spiller, K. Blasche, P. Hülsmann, A. Krämer, H. Ramakers, H.R. Sprenger
    GSI, Darmstadt
 
  For the present experiment program and the planned international accelerator facility at GSI, the space charge limit of SIS18 for highly(4x1010) and intermediate (2.7x1011) charged uranium ions shall be reached within the next four years. Furthermore, measures to increase the repetition- and ramp rate up to 4 Hz with 10 T/s have been progressed. The present state of intensities per cycle and the limitations will be described. In connection with the planned enhancement of heavy ion intensities, protection, interlock and diagnostic systems, especially for the injection- and extraction devices have been prepared. Special attention is drawn on the insights which were achieved with respect to the operation at dynamic vacuum conditions. Results of R&D work with the goal to increase the intensity threshold and to improve the beam life time will be summarized. Furthermore, the specific upgrade program and schedule for the SIS18 booster mode will be presented.  
WEPKF027 R&D Vacuum Issues of the Future GSI Accelerator Facilities 1657
 
  • H.R. Sprenger, M.C. Bellachioma, M. Bender, H. Kollmus, A. Krämer, J. Kurdal, P.J. Spiller
    GSI, Darmstadt
 
  The new GSI accelerator facilities are planned to deliver heavy ion beams of increased energy and highest intensity. Whereas the energy is planned to be increased roughly by a factor of 10, the ion beam intensities are planned to be enlarged by three orders of magnitude. To achieve highest beam intensities, medium charged heavy ions (e.g. U28+) are accelerated. Since the ionization cross sections for these ions are comparably high, a UHV-accelerator system with a base pressure in the low 10-12mbar regime is required, even under the influence of ion beam loss induced desorption processes. An intensive program was started to upgrade the UHV system of the existing synchrotron SIS18 (bakeable) and to design and lay out the UHV systems of the future synchrotron SIS100 and SIS300 (mainly cryogenic). The strategy of this program includes basic research on the physics of the ion induced desorption effects as well as technical developments, design and prototyping on bakeable UHV components (vacuum chambers, diagnostics, bakeout-control, pumping speed), collimator for controlled ion beam loss, NEG coating and cryogenic vacuum components.