A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Spata, M.

Paper Title Page
TUPKF068 JLAB Hurricane Recovery 1102
 
  • A. Hutton, D. Arenius, F.J. Benesch, S. Chattopadhyay, E. Daly, V. Ganni, O. Garza, R. Kazimi, R. Lauze, L. Merminga, W. Merz, R. Nelson, W. Oren, M. Poelker, T. Powers, J.P. Preble, C. Reece, R.A. Rimmer, M. Spata, S. Suhring
    Jefferson Lab, Newport News, Virginia
 
  Hurricane Isabel, originally a Category 5 storm, arrived at Jefferson Lab on September 18 with winds of only 75 mph creating little direct damage to the infrastructure. However, electric power was lost for four days allowing the superconducting cryomodules to warm up and causing a total loss of the liquid helium. The subsequent recovery of the cryomodules and the impact of the considerable amount of opportunistic preventive maintenance provides important lessons for all accelerators complexes, not only those with superconducting elements. The details of how the recovery process was structured and the resulting improvement in accelerator availability will be discussed in detail.  
TUPLT164 CEBAF Injector Achieved World's Best Beam Quality for Three Simultaneous Beams with a Wide Range of Bunch Charges 1512
 
  • R. Kazimi, K. Beard, F.J. Benesch, A. Freyberger, J.M. Grames, T. Hiatt, A. Hutton, G.A. Krafft, L. Merminga, M. Poelker, M. Spata, M. Tiefenback, B.C. Yunn, Y. Zhang
    Jefferson Lab, Newport News, Virginia
 
  The CEBAF accelerator simultaneously provides three 499 MHz interleaved continuous electron beams spanning 5 decades in beam intensity (a few nA to 200 uA) to three experimental halls. The typical three-user physics program became more challenging when a new experiment, G0, was approved for more than six times higher bunch charge than is routine. The G0 experiment requires up to 8 million electrons per bunch (at a reduced repetition rate of 31 MHz) while the lowest current hall operates at 100 electrons per bunch simultaneously. This means a bunch destined to one hall may experience significant space charge forces while the next bunch, for another hall, is well below the space charge limit. This disparity in beam intensity is to be attained while maintaining best ever values in the beam quality, including final relative energy spread (<2.5x 10-5 rms) and transverse emittance (<1 mm-mrad norm. rms). The difficulties related to space charge emerge in the 10m long, 100 keV section of the CEBAF injector during initial beam production and acceleration. A series of changes were introduced in the CEBAF injector to meet the new requirements, including changes in the injector setup, adding new magnets, replacing lasers used for the photocathode and modifying typical laser parameters, stabilizing RF systems, and changes to standard operating procedures. In this paper, we will discuss all these modifications in some detail including the excellent agreement between the experimental results and detailed simulations. We will also present some of our operational results.