A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Solaz Cerdan, R.

Paper Title Page
WEPKF010 Design of an Automatic System for the Electrical Quality Assurance during the Assembly of the Electrical Circuits of the LHC 1612
 
  • D. Bozzini, V. Chareyre, A. Jacob, K.H. Mess, S. Russenschuck, R. Solaz Cerdan
    CERN, Geneva
 
  During the assembly of the LHC one of the challenges will be the correct wiring of the 1712 circuits powering the 10094 magnet units, for which all-together 70000 splices have to be done. Considering the complexity of the electrical scheme the risk of wrong wiring is high. Errors, if not detected during the assembly phase, will perturb the LHC operation. A method has been developed to verify automatically the cabling scheme. It first detects the continuity of a portion of circuit and then verifies the correct polarity and type of the magnets in the circuit. A 108-meter LHC cell is the shortest length that can be tested. The system is composed of a unit to be placed at the center of the cell and two de-multiplexers positioned at the extremities of the cell. The central unit contains a data acquisition system where in total 217 signals can be acquired and more than 3000 voltage combinations are possible. Pointing to different databases, a LabVIEW program automatically executes the test procedure, generates, and stores the reports. The hardware and software design, the data flow between databases, and the testing methodology applied to the different circuit types are described.