A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Skrinsky, A.N.

Paper Title Page
MOPLT087 Research of Possibility to use Beam Polarization for Absolute Energy Calibration in High-precision Measurement of Tau Lepton Mass at VEPP-4M 737
 
  • A.V. Bogomyagkov, V. Kiselev, E.V. Kremyanskaya, E. Levichev, S.A. Nikitin, I.B. Nikolaev, E.A. Simonov, A.N. Skrinsky
    BINP SB RAS, Novosibirsk
 
  Experiments of 2002-2003 years on measurement of duration of beam polarization existence in VEPP-4M electron-positron storage ring after injection of polarized beams from VEPP-3 booster at energies in the vicinity of tau-lepton production threshold (1777 MeV) are described. Polarized beams in such conditions are planned to use in the experiment at VEPP-4M with KEDR detector on high precision measurement of tau-lepton mass wiyh the help of resonant depolarization technique for absolute calibration of particle energy. It was shown that despite of closeness of the strong depolarizing integer spin resonance (1763 MeV) the polarization lifetime though is limited, but still is sufficient for realization of energy calibration procedure with a high accuracy (10-6).  
MOPLT088 Experimental Plasma Wake-field Acceleration Project at the VEPP-5 Injection Complex 740
 
  • A.V. Petrenko, A. Burdakov, A.M. Kudryavtsev, P.V. Logatchev, K.V. Lotov, A.N. Skrinsky
    BINP SB RAS, Novosibirsk
 
  The project of an experimental facility based on the VEPP-5 injection complex is described. Due to a good quality of electron or positron beams and special beam preparation system, the facility opens several possibilities for studies of the plasma wakefield acceleration: high peak beam currents, arbitrary beam profiles, long term beam-plasma interaction (up to the full driver depletion), and precise beam diagnostics. Various wakefield regimes can be experimentally demonstrated and studied: the efficient blow-out regime with a low energy spread and high acceleration rate (up to several GeV per meter); multibunch regime; long bunch instabilities; beam self-organization in plasma; plasma lens. If successfully realized, this experiment becomes a solid argument for feasibility of a high-energy collider based upon the plasma wakefield acceleration.  
WEPLT056 An Electron Cooling System for the Proposed HESR Antiproton Storage Ring 1966
 
  • M. Steck, K. Beckert, P. Beller, A. Dolinskii, B.  Franzke, F. Nolden
    GSI, Darmstadt
  • V.V. Parkhomchuk, V.B. Reva, A.N. Skrinsky, V.A. Vostrikov
    BINP SB RAS, Novosibirsk
 
  The HESR storage ring in the proposed new international accelerator facility will provide high quality antiproton beams for experiments with an internal target. In order to achieve the design luminosity for collisions with a hydrogen target powerful beam cooling is required. For dedicated experiments ultimate resolution is demanded. Therefore it is foreseen to provide cooled antiproton beams in the energy range 0.8-14 GeV with an energy spread of 100 keV or better. According to computer simulations the required cooling rates can be achieved by electron cooling with an electron current of 1 A. The conceptual design of an electron beam device which is based on electrostatic acceleration of the electrons and their transport in longitudinal magnetic fields into a cooling section with a strong magnetic field of up to 0.5 T will be presented. This design will allow cooling in the magnetized regime in order to reach the required high cooling rates. Some novel features for the generation and regulation of the accelerating voltage and for the beam transport are proposed.  
TUPLT120 Commissioning of Electron Cooler EC-300 1419
 
  • V.B. Reva, E.A. Bekhtenev, V.N. Bocharov, A.V. Bubley, Y. Evtushenko, A.D. Goncharov, A.V. Ivanov, V.I. Kokoulin, V.V. Kolmogorov, M.N. Kondaurov, S.G. Konstantinov, V.R. Kozak, G.S. Krainov, Ya.G. Kruchkov, E.A. Kuper, A.S. Medvedko, L.A. Mironenko, V.M. Panasyuk, V.V. Parkhomchuk, K.K. Schreiner, B.A. Skarbo, A.N. Skrinsky, B.M. Smirnov, M.A. Vedenev, R. Voskoboinikov, M.N. Zakhvatkin, N.P. Zapiatkin
    BINP SB RAS, Novosibirsk
  • J. Li, W. Lu, L.J. Mao, Z.X. Wang, X.B. Yan, X.D. Yang, J.H. Zhang, W. Zhang, H.W. Zhao
    IMP, Lanzhou
 
  The article deals with the commissioning of electron cooler EC-300. It was designed and manufactured for CSR experiment (IMP, Lanzhou, China) by BINP, Russia. The energy of electron beam is up to 300 keV, the electron current is up to 3 A, the magnetic field in the cooling section is up to 1.5 kG. The major innovation of the cooler is the variable profile of electron beam, the electrostatic bends of the electron beam and the system of the magnetic field correction. During commissioning the linearity of the magnetic field 10-6 was obtained, the recuperation efficiency was observed up 10-6 , the pressure of residual gas in the vacuum chamber was 5· 10-11 torr during operation with the electron beam. The CSRe cooler for IMP is a new step at cooling technique and the first results achieved during commissioning are very interesting for accelerator physics.