A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Shea, T.J.

Paper Title Page
TUPLT170 The SNS Beam Power Upgrade 1527
 
  • S. Henderson, S. Assadi, R. Cutler, V.V. Danilov, G.W. Dodson, R.E. Fuja, J. Galambos, J.A. Holmes, N. Holtkamp, D.-O. Jeon, S. Kim, L.V. Kravchuk, M.P. McCarthy, G.R. Murdoch, D.K. Olsen, T.J. Shea, M.P. Stockli
    ORNL/SNS, Oak Ridge, Tennessee
 
  The Spallation Neutron Source (SNS) accelerator systems, which consist of an H- injector, a 1 GeV linear accelerator, an accumulator ring and associated transport lines, will provide a 1 GeV, 1.44 MW proton beam to a liquid mercury target for neutron production. The SNS is presently under construction at Oak Ridge National Laboratory and will begin operations in 2006. Even in the baseline design, many of the accelerator subsystems are capable of supporting higher beam intensities and higher beam energy. We report on upgrade scenarios for the SNS accelerator systems which increase the 1.44 MW baseline beam power to at least 3 MW, and perhaps as high as 5 MW. The increased SNS beam power can be achieved primarily by increasing the H- ion source current, installing additional superconducting cryomodules to increase the final linac beam energy to 1.3-1.4 GeV, and modifying injection and extraction hardware in the ring to handle the increased beam energy. The upgrade beam parameters will be presented, the required hardware modifications will be described, and the beam dynamics implications will be discussed.  
THPLT167 SNS Laser Profile Monitor Progress 2849
 
  • W. Blokland, A.V. Aleksandrov, S. Assadi, C. Deibele, W. Grice, S. Henderson, T. Hunter, P. Ladd, G.R. Murdoch, J. Pogge, K. Potter, T.J. Shea, D. Stout
    ORNL/SNS, Oak Ridge, Tennessee
  • V. Alexandrov
    BINP SB RAS, Protvino, Moscow Region
 
  SNS will use a Nd:YAG laser to measure transverse profiles in the 186-1000 MeV super-conducting LINAC (SCL) and Ti:Sapphire modelock laser to measure longitudinal profiles in the 2.5 MeV Medium Energy Beam Transport (MEBT). The laser beam is scanned across the H- beam to photo-neutralize narrow slices. The liberated electrons are collected to provide a direct measurement of the transverse or longitudinal beam profile. We have successfully measured the transverse profile with a prototype system on the MEBT beam. The final SCL system uses an optical transport line that is installed alongside the 300 meter super-conducting LINAC to deliver laser light at 8 locations. Possible vibrations in the optical transport system can lead to inaccuracies in the profile measurement. We will use an active feedback system on a mirror to correct any vibration up to 2 KHz. In this paper we describe our vibration studies and vibration cancellation system as well as the progress in the design, installation and testing of various subsystems for both the transverse and the longitudinal profiles.