A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Seryi, A.

  
Paper Title Page
MOZCH02 Start to End Simulations of Low Emittance Tuning and Stabilization 31
 
  • P. Tenenbaum, A. Seryi, M. Woodley
    SLAC, Menlo Park, California
  • D. Schulte
    CERN, Geneva
  • N.J. Walker
    DESY, Hamburg
  • G.R. White
    Queen Mary University of London, London
 
  The principal beam dynamics challenge to the subsystems between the damping ring and the collision point of future linear colliders is expected to be the tuning and stabilization required to preserve the transverse emittance and to collide nanometer-scale beams. Recent efforts have focused on realistically modelling the operation and tuning of this region, dubbed the Low Emittance Transport (LET). We report on the development of simulation codes which permit integrated simulation of this complex region, and on early results of these simulations. Future directions of LET simulation are also revealed.  
Video of talk
Transparencies
MOPLT121 Water Flow Vibration Effect on the NLC RF Structure-girder System 821
 
  • C. Boffo, T.T. Arkan, E. Borissov, H. Carter
    Fermilab, Batavia, Illinois
  • F. Le Pimpec, A. Seryi
    SLAC, Menlo Park, California
 
  In order to meet the vibration budget for the Next Linear Collider main Linac components, the vibration sources in the NLC girder are being studied. The activity is focused on the vibration induced by the cooling water flow for the 60 cm long accelerating copper structures. Understanding the vibration in the structures will enable us to push forward the design of the interface between the structures and the quadrupoles. This paper reports on the ongoing work and presents results from experimental data as well as finite element simulations.  
MOPLT137 Beam Delivery Layout for the Next Linear Collider 860
 
  • A. Seryi, Y. Nosochkov, M. Woodley
    SLAC, Menlo Park, California
 
  We present the latest design and layout of the NLC Beam Delivery System (BDS) for the first and second interaction region (IR). This includes the beam switchyard, skew correction and emittance diagnostics section, collimation system integrated with the final focus, the primary and post linac tune-up beam dumps, and arcs of the second interaction region beamline. The layout and optics are optimized to deliver the design luminosity in the entire energy range from 90GeV to 1.3TeV CM, with the first IR BDS also having the capabilities for multi-TeV extension.  
MOPLT138 Vibrational Stability of GLC/NLC Linear Collider: Status and R&D Plans 863
 
  • A. Seryi, F. Asiri, F. Le Pimpec
    SLAC, Menlo Park, California
  • K. Fujii, T. Matsuda, T. Tauchi, H. Yamaoka
    KEK, Ibaraki
 
  Luminosity stability of the X-band linear collider will be provided by beam-based train by train steering feedbacks in the linac and at the IP, optional active stabilization of the final doublet, being developed to counteract possible excessive vibration of the detector, and optional fast intratrain feedback that would allow delivering major part of the luminosity while other systems are being commissioned. Control and reduction of the beam jitter originating from vibration of collider components is part of our strategy described in this paper.  
THPLT156 Simulations of IP Feedback and Stabilization in the NLC 2822
 
  • L. Hendrickson, J.C. Frisch, T.M. Himel, T.O. Raubenheimer, A. Seryi, M. Woodley
    SLAC, Menlo Park, California
  • G.R. White
    Queen Mary University of London, London
 
  Keeping nanometer-sized beams in collision is an essential component in achieving design luminosity in a linear collider. The NLC stabilization strategy is conservative by including enough redundancy so that if some piece doesn't work to specification or the incoming beam motion is worse than expected, the beams will still be kept in collision. We show simulation results with both realistic and pessimistic assumptions about the response of the ground motion, inertial stabilization, interbunch and intertrain feedback systems. By providing backup systems, and by assuming that some systems may perform more poorly than expected, we can achieve a high level of confidence in our ability to successfully stabilize the beams.  
THPLT157 Beam-based Feedback for the NLC Linac 2825
 
  • L. Hendrickson, N. Phinney, A. Seryi, P. Tenenbaum, M. Woodley
    SLAC, Menlo Park, California
 
  The NLC linac train-by-train feedback system is designed to stabilize the beam trajectory, but is also a valuable element in the strategy for emittance preservation. New simulations employ improved strategies [*], allowing beam steering to be performed significantly less often than without the feedback system. Additional simulations indicate that the linac feedback can contribute towards successful operation at noisier sites.

* Beam-based Feedback Simulations for the NLC Linac, L. Hendrickson et al., LINAC, Monterey, California (2000)