A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Schlott, V.

  
Paper Title Page
MOPKF005 Preliminary Results on a Low Emittance Gun Based on Field Emission 306
 
  • R. Ganter, A.E. Candel, M. Dehler, G.J. Gobrecht, C. Gough, S.C. Leemann, K.L. Li, M. Paraliev, M. Pedrozzi, J.-Y. Raguin, L. Rivkin, V. Schlott, L. Schulz, A. Streun, A. Wrulich
    PSI, Villigen
 
  The development of a new electron gun with the lowest possible emittance would help reducing the total length and cost of a free electron laser. Recent progresses in vacuum nanoelectronics make field emitter arrays (FEAs) an attractive technology to explore for high brightness sources. Indeed, several thousands of microscopic tips can be deposited on a 1 mm diameter area. Electrons are then extracted by a first grid layer close to tip apex and focused by a second grid layer one micrometer above the tip apex. The typical aperture diameter of this focusing layer is also in the range of one micrometer. The big challenge with FEA, is to achieve good emission homogeneity, we hope to achieve this with diverse conditioning techniques. However if we can achieve a low emittance with FEAs another challenge will be to preserve the emittance during the beam acceleration.  
THOALH01 Bunch Length Measurements at the SLS Linac using Electro-optical Techniques 253
 
  • A. Winter, M. Tonutti
    RWTH, Aachen
  • S. Casalbuoni, P. Schmüser, S. Simrock, B. Steffen
    DESY, Hamburg
  • T. Korhonen, T. Schilcher, V. Schlott, H. Sigg, D. Suetterlin
    PSI, Villigen
 
  The temporal profile of the electron bunches in the SLS Linac will be determined by means of electro-optical techniques. A mode locked Ti:Sa Laser with 15 fs pulse width is used for coincidence measurements between the laser pulse and the coherent transition radiation (CTR) generated by short electron bunches. Synchronization accuracy of 100 fs rms between the 3 GHz Linac RF and the 81 MHz repetition rate of the laser was achieved, which is important for the optimum time resolution of the applied electro-optical sampling technique. Likewise, a mode locked Nd:YAG laser with 400 ps long pulses will be used for electro-optical autocorrelation measurements between the CTR and the laser pulses. This alternative technique promises single shot capability and requires much relaxed synchronization stability between laser and electron beam.  
Video of talk
Transparencies
THPLT022 The Generic VME PMC Carrier Board: A Common Digital Hardware Platform for Beam Diagnostics and Feedbacks at PSI 2514
 
  • B. Keil, C. Buehler, P.-A. Duperrex, U. Greuter, R. Kramert, P. Pollet, V. Schlott, N. Schlumpf, P. Spuhler
    PSI, Villigen
 
  Rapid progress in digital electronics allows digitization of monitor signals at a very early stage of the signal processing chain, providing optimum performance and maximum flexibility for today's accelerator instrumentation. While the analog front-ends of such systems are usually specific for each monitor type, the subsequent digital part of the processing chain can be unified for many different measurement tasks. The "VME generic PMC Carrier board" (VPC) was developed to achieve this unification at the PSI electron and proton accelerator diagnostics and fast data acquisition and feedback systems. The core of the VME64x board consists of two Virtex2Pro FPGAs with two PowerPCs each, a floating point DSP and RAM. The FPGAs can acquire and process measurement data from the VMEbus P0/P2 connectors or from two application-dependent PMC mezzanine modules. Two 2 GBaud fibre optics transceivers may also be used to aquire or distribute measurement data. Envisaged applications include digital beam position (DBPM) and current monitors for proton beams, data processing for a muon decay experiment, and general beam diagnostics as well as global feedbacks at SLS accelerators and beamlines.  
THPLT023 The Use of Photon Monitors at the Swiss Light Source 2517
 
  • J. Krempasky, M. Böge, T. Schilcher, V. Schlott, T. Schmidt
    PSI, Villigen
 
  The photon beam position monitors (PBPM) in a synchrotron radiation facility are important tools for beam-line and machine diagnostics since they deliver position and angle information directly from the radiation source point. In the last two years a number of PBPMs have been installed and commissioned at the Swiss Light Source (SLS). Their readouts have been systematically studied and the results have been correlated with data from the digital beam position monitor (DBPM) system. It turns out that the PBPMs help understanding the influence of insertion device gap changes on photon beam position and thus on photon flux and/or energy resolution near the beam-line experimental stations. In addition to the global fast orbit feedback (FOFB), a local slow feedback based on PBPM data has been implemented to remove the remaining systematic effects of the DBPM system and to stabilize the photon beam to a micron level at the experimental station.  
THPLT024 Commissioning and Operation of the SLS Fast Orbit Feedback 2520
 
  • T. Schilcher, M. Böge, B. Keil, P. Pollet, V. Schlott
    PSI, Villigen
 
  The SLS Fast Orbit Feedback (FOFB) was successfully commissioned in 2003. Since November 2003 it runs during user operation of the accelerator. Taking into account 72 Digital Beam Position Monitors (DBPMs), the FOFB applies SVD-based global orbit corrections for 72 horizontal (x) and 72 vertical (y) correctors at a rate of 4 kHz, compared to ~0.5 Hz for the Slow Orbit Feedback (SOFB) that was used so far. While the SOFB was important for the elimination of orbit drifts due to temperature changes and slowly moving insertion device (ID) gaps, the FOFB is also able to damp orbit oscillations that are caused by fast changes of ID gaps or magnets, by ground and girder vibrations, 3 Hz booster crosstalk and power supply noise. This report presents experience from commissioning and user operation of the FOFB.  
THPLT025 Using Visible Synchrotron Radiation at the SLS Diagnostics Beamline 2523
 
  • V. Schlott, M. Dach, Ch. David, B. Kalantari, M. Pedrozzi, A. Streun
    PSI, Villigen
 
  A diagnostics beamline has been set-up at the BX05 bending magnet of the SLS storage ring. It is equipped with a standard bending magnet front end, including two photon beam position monitors (PBPM) for determination of photon beam angle and position as well as a pinhole array monitor for online monitoring of beam size. The visual part of the dipole radiation is transported to an optical lab, where the temporal profile of the storage ring bunches can be measured with a minimal time resolution of 2 ps using a dual sweep, synchrocan streak camera. Simultaneously, beam size and coupling can be measured at 1.8 keV radiation energy with a zome plate monitor overcoming diffraction limitations. This paper describes the beamline design and summarizes the first experimental results.  
THPLT186 Bunch Pattern Control in Top-up Mode at the SLS 2882
 
  • B. Kalantari, T. Korhonen, V. Schlott
    PSI, Villigen
 
  One of the crucial issues in the advanced third generation light sources is the bunch pattern control in the storage ring, where various filling patterns are of interests for different experiments. The most important step is to keep a uniform charge distribution over all (electron) bunches during the top-up operation. Such a bunch pattern control has been implemented at the Swiss Light Source (SLS). It provides a filling pattern with bunch-to-bunch fluctuation of a few percent. Since a dependency of the medium term orbit stability on the actual filling pattern was observed in the past, the stability could significantly be improved. Three major ingredients have made the implementation possible: precise timing system, flexible control system and sophisticated diagnostics. The method is being used in the user operation recently and proved to be reliable. This paper describes the hardware and software involved in the mentioned technique.