A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Satogata, T.

  
Paper Title Page
MOPLT172 Quest for a New Working Point in RHIC 929
 
  • R. Tomas, M. Bai, W. Fischer, V. Ptitsyn, T. Roser, T. Satogata
    BNL, Upton, Long Island, New York
 
  The beam-beam interaction is a limiting factor in RHIC's performance, particularly in proton operation. Changing the working point is a strategy to minimize the beam-beam effect and improve the performance of the machine. Experiments at injection energy and simulations have been performed for a set of working points in order to determine what are the best candidates.  
TUXLH03 RHIC Performance and Plans Towards Higher Luminosity and Higher Polarization 98
 
  • T. Satogata
    BNL, Upton, Long Island, New York
 
  RHIC is the first hadron collider consisting of two independent rings. It is designed to operate over a wide range of beam energies and species, including polarized protons, heavy ions, and asymmetric beam collisions. RHIC has produced physics data at four experiments since 1999 in runs that include gold-on-gold collisions at design beam energy (100 GeV/u), high-energy polarized proton-proton collisions (100 GeV on 100 GeV), and deuteron-gold collisions (100 GeV/u). Recent machine performance will be reviewed for high-luminosity gold-gold operations and polarized proton operations, including causes and solutions for known operational limits. Plans and progress for luminosity and polarization improvements, electron cooling, and the electron-ion collider eRHIC will be discussed.  
Video of talk
Transparencies
TUPLT177 RHIC Optics Measurements at Different Working Point 1541
 
  • R. Calaga, M. Bai, S. Peggs, T. Roser, T. Satogata
    BNL, Upton, Long Island, New York
 
  Working point scans at RHIC were performed during 2004 to determine the effect on lifetime and luminosity. Linear optics were measured for different working point tunes by exciting coherent oscillations with the aid of RHIC AC dipoles. Two methods to measure the beta functions and phases are presented and compared: a conventional technique, and a new method based on singular value decomposition (SVD). The performance of a 3-bump beta wave algorithm to identify quadrupole error sources is also presented.  
MOPLT165 Luminosity Increases in Gold-gold Operation in RHIC 917
 
  • W. Fischer, L. Ahrens, J. Alessi, M. Bai, D. Barton, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, D. Bruno, J. Butler, R. Calaga, P. Cameron, R. Connolly, T. D'Ottavio, J. DeLong, K.A. Drees, W. Fu, G. Ganetis, J. Glenn, T. Hayes, P. He, H.-C. Hseuh, H. Huang, P. Ingrassia, U. Iriso, R. Lee, Y. Luo, W.W. MacKay, G. Marr, A. Marusic, R. Michnoff, C. Montag, J. Morris, T. Nicoletti, B. Oerter, C. Pearson, S. Peggs, A. Pendzick, F.C. Pilat, V. Ptitsyn, T. Roser, J. Sandberg, T. Satogata, C. Schultheiss, A. Sidi-Yekhlef, L. Smart, S. Tepikian, R. Tomas, D. Trbojevic, N. Tsoupas, J. Tuozzolo, J. Van Zeijts, K. Vetter, K. Yip, A. Zaltsman, S.Y. Zhang, W. Zhang
    BNL, Upton, Long Island, New York
 
  After an exploratory phase, during which a number of beam parameters were varied, the RHIC experiments now demand high luminosity to study heavy ion collisions in detail. Presently RHIC operates routinely above its design luminosity. In the first 4 weeks of its current operating period (Run-4) the machine has delivered more integrated luminosity that during the 14 weeks of the last gold-gold operating period (Run-2). We give an overview of the changes that increased the instantaneous luminosity and luminosity lifetime, raised the reliability, and improved the operational efficiency.  
MOPLT167 RHIC Operation with Longitudinally Polarized Protons 920
 
  • H. Huang, M. Bai, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, K.A. Drees, W. Fischer, A.U. Luccio, W.W. MacKay, C. Montag, F.C. Pilat, V. Ptitsyn, T. Roser, T. Satogata, S. Tepikian, D. Trbojevic, J. Van Zeijts, A.Y. Zelinsky, S.Y. Zhang
    BNL, Upton, Long Island, New York
 
  Longitudinally polarized proton beams have been accelerated, stored and collided at 100GeV in the Relativistic Heavy Ion Collider (RHIC) to study spin effects in the hadronic reactions. The essential equipment includes four Siberian snakes, eight spin rotators and a fast relative polarimeters in each of the two RHIC rings as well as local polarimeters at the STAR and PHENIX detectors. This paper summarizes the performance of RHIC as a polarized proton collider.  
MOPLT178 RHIC Pressure Rise 944
 
  • S.Y. Zhang, J. Alessi, M. Bai, M. Blaskiewicz, P. Cameron, K.A. Drees, W. Fischer, R.P. Fliller III, D. Gassner, J. Gullotta, P. He, H.-C. Hseuh, H. Huang, U. Iriso, R. Lee, Y. Luo, W.W. MacKay, C. Montag, B. Oerter, S. Peggs, F.C. Pilat, V. Ptitsyn, T. Roser, T. Satogata, L. Smart, P. Thieberger, D. Trbojevic, J. Van Zeijts, L. Wang, J. Wei, K. Zeno
    BNL, Upton, Long Island, New York
 
  Beam induced pressure rise remains an intensity limit at the RHIC for both heavy ion and polarized proton operations. The beam injection pressure rise at warm sections has been diagnosed due to electron cloud effect. In addition, pressure rise of heavy ion operation at the beam transition has caused experiment background problem in deuteron-gold run, and it is expected to take place in gold-gold run at high intensities. This type of pressure rise is related to beam momentum spread, and the electron cloud seems not dominant. Extensive approaches for both diagnosis and looking-for-remedies are undergoing in the current gold operation, RUN 4. Results of beam scrubbing, NEG pipe in RHIC ring, beam scraping test of ion desorption, beam momentum effect at the transition, beam gap effect, solenoid effect, and NEG pipe ion desorption test stand will be presented.