A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Sannibale, F.

Paper Title Page
MOPKF072 Towards Attosecond X-ray Pulses from the FEL 482
 
  • A. Zholents, J.M. Byrd, W. Fawley, Z. Hao, M.C. Martin, D. Robin, F. Sannibale, R.W. Schoenlein, M. Venturini, M.S. Zolotorev
    LBNL, Berkeley, California
 
  The ability to study ultrafast phenomena has been recently advanced by the demonstrated production and measurement of a single, 650-attosecond, soft x-ray pulses precisely synchronized to the pump laser pulse consisted of just few optical cycles. The next frontier is a production of attosecond x-ray pulses at even shorter wavelengths. Here we propose the method of ?seeded attosecond x-ray radiation? where an isolated, attosecond duration, short-wavelength x-ray pulse is radiated by electrons selected by their previous interaction with a few-cycle, intense laser pulse. In principle this method allows excellent synchronization between the attosecond x-ray probe pulse and a pump source that can be the same few-cycle laser pulse or another signal derived from it.  
WEPLT147 Lattice Studies for CIRCE (Coherent InfraRed CEnter) at the ALS 2179
 
  • H. Nishimura, D. Robin, F. Sannibale, W. Wan
    LBNL, Berkeley, California
 
  CIRCE (Coherent InfraRed Center) at the Advanced Light Source is a proposal for a new electron storage ring optimized for the generation of coherent synchrotron radiation (CSR) in the terahertz frequency range. One of the main requirement for this special mode of operation is the capability of the ring of operating at very small momentum compaction values. In this regime, the longitudinal dynamics becomes strongly nonlinear and an accurate control of the higher order energy dependent terms of the momentum compaction is necessary. The lattice for CIRCE allows controlling these terms up to the third order. The paper describes the lattice and presents the calculated performances in terms of momentum acceptance, dynamic aperture, lifetime and momentum compaction tune capabilities.  
THPKF073 CIRCE, the Coherent InfraRed CEnter at the ALS 2433
 
  • J.M. Byrd, S. De Santis, J.-Y. Jung, M.C. Martin, W.R. McKinney, D.V. Munson, H. Nishimura, D. Robin, F. Sannibale, R.D. Schlueter, M. Venturini, W. Wan, M.S. Zolotorev
    LBNL, Berkeley, California
 
  CIRCE (Coherent InfraRed Center) is a new electron storage ring to be built at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory (LBNL). The ring design is optimized for the generation of coherent synchrotron radiation (CSR) in the terahertz frequency range. CIRCE operation includes three possible modes: ultra stable CSR, femtosecond laser slicing CSR and broadband SASE. CSR will allow CIRCE to produce an extremely high flux in the terahertz frequency region. The many orders of magnitude increase in the intensity is the basis of our project and enables new kinds of science. The characteristics of CIRCE and of the different modes of operation are described in this paper.  
THPKF078 Coherent Infrared Radiation from the ALS Generated via Femtosecond Laser Modulation of the Electron Beam 2445
 
  • A. Zholents, J.M. Byrd, Z. Hao, M.C. Martin, D. Robin, F. Sannibale, R.W. Schoenlein, M. Venturini, M.S. Zolotorev
    LBNL, Berkeley, California
 
  Interaction of an electron beam with a femtosecond laser pulse co-propagating through a wiggler at the ALS produces significant modulation of the electron energies within a short ~100 fs slice of the electron bunch. Subsequent propagation of the energy-modulated bunch around the storage ring results in an appearance of a local temporal modulation of the electron density (micro-bunching) due to the dispersion of electron trajectories. The temporal width of this perturbation evolves as the electron bunch propagates around the ring. The shortest modulation, ~50 microns, appears in the ALS sector immediately following the wiggler magnet, and stretches to ~ 500 microns following propagation over 2/3 of a storage ring orbit. The modulated electron bunch emits single-cycle pulses of temporally and spatially coherent infrared light which are automatically synchronized to the laser pulses. The intensity and spectra of the infrared light were measured in two locations in the ring indicated above and were found to be in good agreement with analytical calculations. Ultra-short pulses of coherent infrared radiation are presently used for a fine tuning the laser ? electron beam interaction for generating femtosecond x-ray pulses.  
THPLT140 Commissioning of BL 7.2, the New Diagnostic Beamline at the ALS 2780
 
  • F. Sannibale, D. Baum, A. Biocca, N. Kelez, T. Nishimura, T. Scarvie, E. Williams
    LBNL, Berkeley, California
  • K. Holldack
    BESSY GmbH, Berlin
 
  BL 7.2 is a new beamline at the Advanced Light Source (ALS) dedicated to electron beam diagnostics. The system, which is basically a hard x-ray pinhole camera, was installed on the storage ring in August 2003 and the commissioning with the ALS electron beam followed immediately after. In this paper, the commissioning results are presented together with the description of the relevant measurements performed for the beamline characterization.  
THPKF076 Plan to Upgrade the Advanced Light Source to Top-off Injection Operation 2439
 
  • D. Robin, B. J. Bailey, K.M. Baptiste, W. Barry, E. Byrne, J.-Y. Jung, S. Kwiatkowski, R.S. Mueller, H. Nishimura, S. Prestemon, S.L. Rossi, F. Sannibale, D. Schlueter, D. Shuman, C. Steier, G.D. Stover, T. Warwick
    LBNL, Berkeley, California
  • R.J. Donahue
    LBNL/ALS, Berkeley, California
 
  The brightness and thermal stability of the Advanced Light Source (ALS) is lifetime limited. Brightness improvements such as narrower gap insertion devices, smaller emittance coupling, and higher currents all result in short lifetimes. In addition current changes over a fill impact the thermal stability of both the storage ring and beamlines. In order to mitigate these limitations there is a plan to upgrade the injector of the ALS to full energy injection and to operate in a quasi-continuous filling (Top-Off) injection operation. With Top-Off, the ALS will increase its time-averaged current by two, reduce the vertical emmittance, and operate with smaller gap insertion devices. In this paper we describe our upgrade plan.