A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Sakaue, K.

Paper Title Page
THPLT082 Beam Diagnostics for a Photocathode Rf-gun System 2685
 
  • K. Sakaue, N. Kudo, R. Kuroda, M. Washio
    RISE, Tokyo
  • H. Hayano, J. Urakawa
    KEK, Ibaraki
  • S. Kashiwagi
    ISIR, Osaka
 
  Beam diagnostic systems for high quality electron beam emitted from photo-cathode rf gun have been developed. Beam characteristics such as bunch length and emittance measurements were performed at Waseda University. The bunch length was measured using an rms bunch length monitor based on beam spectrum analysis. The monitor is very useful as the non-destructive and conventional tool even for the relatively low energy electron beam around 5MeV. The measurement results of the rms bunch lengths using this monitor are in good agreement with the simulation results of PARMELA. However, it is not applicable for the measurement of longitudinal profile of the electron bunch, so that we have started the manufacturing of a deflection cavity, so-called RF-Kicker, to measure the longitudinal profiles of the bunch. The emittance has been measured by using a slit scan technique. By using double slit scan technique, emittance of 9mmmrad has been obtained. Though the value is not satisfactory small, we believe that much smaller emittance can be obtained by optimizing a laser profile. The measurement results and progress of rf gun at Waseda University will be presented at the conference.  
THPLT081 Present Status of Photo-cathode RF Gun System and its Applications at Waseda University 2682
 
  • R. Kuroda, Y. Hama, K. Hidume, H. Hirama, M. Kawaguchi, N. Kudo, T. Kuribayasi, S. Minamiguchi, R. Moriyama, T. Saito, K. Sakaue, D. Ueyama, M. Washio
    RISE, Tokyo
  • H. Hayano, J. Urakawa
    KEK, Ibaraki
  • S. Kashiwagi
    ISIR, Osaka
  • X.J. Wang
    BNL/NSLS, Upton, Long Island, New York
 
  High quality electron beam generation using photo-cathode rf gun system and its application have been developed at Waseda University. This system can generate about 4 MeV low emittance electron beam. This is applied for soft X-ray generation using laser Compton scattering and pulse radiolysis experiments based on the pump-probe technique. In case of the soft X-ray generation, Compton scattering experiments between about 4.2 MeV electron beam and Nd:YLF laser light (1047nm) is performed at 20 degrees interaction angle, so that about 300 eV soft X-ray is generated. In case of the pulse radiolysis experiments, the electron beam is used for the pump beam. The probe light is generated as white light by concentrating Nd:YLF laser light (1047nm) on the water cell. The measurement with about 30 ps (FWHM) time resolution of this system is demonstrated for the absorption of hydrated electrons. In this conference, we will present the experimental results, status of this system and future applications.