A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Rijllart, A.

Paper Title Page
WEPKF019 Magnetic Measurement Systems for the LHC Dipole Assembly Firms 1636
 
  • H. Reymond, J. Billan, J. Garcia Perez, D. Giloteaux, A. Raimondo, V. Remondino, A. Rijllart
    CERN, Geneva
 
  The LHC lattice superconducting dipole magnets are actually under construction in three European industries. Due to the extremely high magnet performance required for the LHC, these magnets have to be built with high accuracy during all the steps of their assembling. In order to detect defects in the earliest production phases and to ensure the quality of the magnetic field as specified by the CERN contracts, dedicated measurement benches have been built and installed in each industry to validate the magnetic field quality at two important production stages. This paper describes the initial requirements and the implementation of the magnetic measurement systems. Details on the technical solutions, the present status and measurement results are presented.  
WEPKF014 Magnetic Field Tracking Experiments for LHC 1621
 
  • V. Granata, J. Billan, F. Bordry, L. Bottura, P. Coutinho Ferreira, E. Effinger, G. Fernqvist, P. Galbraith, Q. King, J. Pett, A. Raimondo, A. Rijllart, H. Thiesen
    CERN, Geneva
 
  At the Large Hadron Collider (LHC) at CERN one of the fundamental requirements during the energy ramp is that the ratio between the field produced by the quadrupoles and the field in the dipoles remains constant in order to minimize the variation of the betatron tune that could induce particle loss. With a series of tracking experiments it has been demonstrated that this ratio can be maintained constant to better than 10-4 throughout the same current ramp as foreseen for the LHC. A technique has been developed to optimise the dipole and quadrupole current ramps to obtain the required ratio of B2/B1. Measurements performed by modulating the current with a harmonic function (so-called k-modulation) demonstrated that it is possible to modulate the strength of an individual quadrupole to determine the magnetic center through beam-based measurements.