A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Raparia, D.

Paper Title Page
TUPLT189 Dipole and Quaqdrupole Sorting for the SNS Ring 1574
 
  • D. Raparia, A.V. Fedotov, Y.Y. Lee, J. Wei
    BNL, Upton, Long Island, New York
 
  The Spallation Neutron Source (SNS) accumulator ring is a high intensity ring and must have low uncontrolled losses for hands on maintenance. To achieve these low losses one needs very tight tolerance. These tight tolerances have been achieved through shimming the magnets and sorting. Dipoles are solid core magnets and had very good field quality but magnet to magnet variation were sorted out according to ITF, since all the dipole are powered with one power supply. Typically, sorting is done to minimize linear effects in beam dynamics. Here, sorting of quadrupoles was done according to a scheme which allows to reduce unwanted strength of nonlinear resonances. As a result, the strength of sextupole resonances for our base line tune-box was strongly reduced which was confirmed by a subsequent beam dynamics simulation.  
WEPLT183 Clearing of Electron Cloud in SNS 2245
 
  • L. Wang, Y.Y. Lee, D. Raparia, J. Wei, S.Y. Zhang
    BNL, Upton, Long Island, New York
 
  In this paper we describe a mechanism using the clearing electrodes to remove the electron cloud in the Spallation Neutron Source (SNS) accumulator ring, where strong multipacting could happen at median clearing fields. A similar phenomenon was reported in an experimental study at Los Alamos laboratory's Proton Synchrotron Ring (PSR). We also investigated the effectiveness of the solenoid's clearing mechanism in the SNS, which differs from the short bunch case, such as in B-factories.  
TUPLT186 Managing System Parameters for SNS Magnets and Power Supplies 1565
 
  • W.J. McGahern, S. Badea, F.M. Hemmer, H.-C. Hseuh, J.W. Jackson, A.K. Jain, F.X. Karl, R.F. Lambiase, Y.Y. Lee, C.J. Liaw, H. Ludewig, G.J. Mahler, W. Meng, C. Pai, C. Pearson, J. Rank, D. Raparia, J. Sandberg, S. Tepikian, N. Tsoupas, J. Tuozzolo, P. Wanderer, J. Wei, W.-T. Weng
    BNL, Upton, Long Island, New York
  • R. Cutler, J.J. Error, J. Galambos, M.P. Hechler, S. Henderson, P.S. Hokik, T. Hunter, G.R. Murdoch, K. Rust, J.P. Schubert
    ORNL/SNS, Oak Ridge, Tennessee
 
  The Spallation Neutron Source (SNS), currently under construction at Oak Ridge, Tennessee, is a collaborative effort of six U.S. Department of Energy partner laboratories. With over 312 magnets and 251 power supplies that comprise the beam transport lines and the accumulator ring, it is a challenge to maintain a closed loop on the variable parameters that are integral to these two major systems. This paper addresses the input variables, responsibilities and design parameters used to define the SNS magnet and power supply systems.