A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Pozzoli, R.

Paper Title Page
WEPLT100 Planar Electron Sources and the Electron Trap ELTRAP 2080
 
  • M. Cavenago
    INFN/LNL, Legnaro, Padova
  • G. Bettega, F. Cavaliere, A. Illiberi, R. Pozzoli, M. Romé, L. Serafini
    INFN-Milano, Milano
 
  Filamentation and other space charge effects (both transverse and longitudinal) of intense electron beams, found for example in rf photoinjectors (beam energy 1 MeV, current 100 A), are easily studied in small voltage traps and drift channels (0.01-10 kV), keeping the same perveance order. A suitable Malmberg-Penning trap, named ELTRAP, installed and operated at the University of Milan, is briefly described; trap length ranges from 10 cm to 1 m; an uniform magnetic field confines electron radially. Several experimental regimes were investigated with the internal CW planar electron source: plasma, beam-plasma, beam, depending on the injection/extraction method chosen. Evolution of electron vortices and virtual cathode formation is documented; analogy with meteorologic and astrophysical plasma is discussed. Upgrading with an external laser pulsed electron source is in course. Larger planar sources are also under construction. (Main classification 4: Beam Dynamics and Electro-magnetic Fields; D03 High Intensity, Incoherent Instabilities, Space Charge, Halos, Cooling; Other classification 8: Low and Intermediate Energy Accelerators and Sources; T12 Beam Injection/Extraction and Transport; T02 Lepton sources)  
MOPLT061 Design Study for Advanced Acceleration Experiments and Monochromatic X-ray Production @ SPARC 695
 
  • L. Serafini, S. Cialdi, R. Pozzoli, M. Romé
    INFN-Milano, Milano
  • D. Alesini, S. Bertolucci, M.E. Biagini, C. Biscari, R. Boni, M. Boscolo, M. Castellano, A. Clozza, G. Di Pirro, A. Drago, A. Esposito, M. Ferrario, V. Fusco, A. Gallo, A. Ghigo, S. Guiducci, M. Incurvati, C. Ligi, F. Marcellini, M.  Migliorati, C. Milardi, L. Palumbo, L. Pellegrino, M.A. Preger, P. Raimondi, R. Ricci, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stecchi, A. Stella, F. Tazzioli, C. Vaccarezza, M. Vescovi, C. Vicario, M. Zobov
    INFN/LNF, Frascati (Roma)
  • F. Alessandria, A. Bacci, F. Broggi, C. De Martinis, D. Giove, M. Mauri
    INFN/LASA, Segrate (MI)
  • R. Bonifacio, I. Boscolo, C. Maroli, V. Petrillo, N. Piovella
    Universita' degli Studi di Milano, MILANO
  • A. Mostacci
    Rome University La Sapienza, Roma
 
  We present a design study for an upgrade of the SPARC photo-injector system, whose main aim is the construction of an advanced beam test facility for conducting experiments on high gradient plasma acceleration and for the generation of monochromatic X-ray beams to be used in advanced medical applications and condensed matter physics studies. Main components of the proposed plan of upgrade are: two additional beam lines with interaction regions for synchronized high brightness electron and high intensity photon beams and the upgrade of the SPARC Ti:Sa laser system to reach a multi-TW power level (in excess of 1 J in pulse energy). Results of numerical simulations modeling the interaction of the SPARC electron beam and the counter-propagating laser beam are presented with detailed discussion of the monochromatic X-ray beam spectra generated by Compton backscattering: X-ray energies are tunable in the range 20 to 500 keV, with pulse duration from sub-ps to 30 ps. Preliminary simulations of plasma acceleration of the SPARC electron beam, generated in ultra-short bunches, via the LWF mechanism and with external injection are also shown: experiments of self-injection are also foreseen and illustrated.