A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Petree, M.

Paper Title Page
MOPLT135 Damping the High Order Modes in the Pumping Chamber of the PEP-II Low Energy Ring 854
 
  • A. Novokhatski, S. Debarger, F.-J. Decker, A. Kulikov, J. Langton, M. Petree, J. Seeman, M.K. Sullivan
    SLAC, Menlo Park, California
 
  The Low Energy Ring of the PEP-II B-factory operates with extremely high currents and short positron bunches. Any discontinuity in the vacuum chamber can excite a broad-band spectrum of the High Order Modes. A temperature rise has been found in the vacuum chamber elements in one transition from straight section to arc. The power in the wake fields was high enough to char beyond use the feed-through for the Titanium Sublimation Pump. This pumping section consists of the beam chamber and an ante-chamber. Fields, excited in the beam chamber penetrate to the ante-chamber and then through the heater wires of the TSP come out. A small ceramic tile was placed near the TSP feed-through to absorb these fields. A short wire antenna was also placed there. HOM measurements show a wide spectrum with a maximum in the 2-3 GHz region. A special water cooled HOM absorber was designed and put inside the ante-chamber part of the section. As a result, the HOM power in the section decreased and the temperature rise went down. The power loss is 750 W for a beam current of 2 A. Measurements of the HOM impedance for different bunch patterns, bunch length and transverse beam position will be presented.  
THPLT154 Design of an X-ray Imaging System for the Low-Energy Ring of PEP-II 2816
 
  • A.S. Fisher, D. Arnett, H. De Staebler, S. Debarger, R.K. Jobe, D. Kharakh, D.J. McCormick, M. Petree, M.C. Ross, J. Seeman, B. Smith
    SLAC, Menlo Park, California
  • J. Albert, D. Hitlin
    CALTECH, Pasadena, California
  • J. Button-Shafer, J.A. Kadyk
    LBNL, Berkeley, California
 
  An x-ray beam-size monitor for positrons in the low-energy ring (LER) of the PEP-II B Factory at SLAC is being designed to accommodate the present 2-A, 3.1-GeV beam and anticipated currents of up to 4.7 A. The final photon stop of an arc will be rebuilt to pass dipole radiation through cooled apertures to optics 17 m from the source. Zone-plate imaging there can achieve a resolution of 6 microns, compared to 35 for a pinhole camera. Two multilayer x-ray mirrors precede the zone plate, limiting the bandwidth to 1%, in order to avoid chromatic blurring and protect the zone plate. Despite the narrow bandwidth, the zone plate?s larger diameter compared to a pinhole camera allows for a comparable photon flux. We will image all 1700 LER bunches and also measure them individually, searching for variations along the train due to electron-cloud and beam-beam effects, using a scanning detector conceptually derived from a wire scanner. A mask with three narrow slots at different orientations will scan the image to obtain three projections. In one passage, signals from a fast scintillator and photomultiplier will be rapidly digitized and sorted to profile each bunch.