A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Pearson, C.

Paper Title Page
MOPLT165 Luminosity Increases in Gold-gold Operation in RHIC 917
 
  • W. Fischer, L. Ahrens, J. Alessi, M. Bai, D. Barton, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, D. Bruno, J. Butler, R. Calaga, P. Cameron, R. Connolly, T. D'Ottavio, J. DeLong, K.A. Drees, W. Fu, G. Ganetis, J. Glenn, T. Hayes, P. He, H.-C. Hseuh, H. Huang, P. Ingrassia, U. Iriso, R. Lee, Y. Luo, W.W. MacKay, G. Marr, A. Marusic, R. Michnoff, C. Montag, J. Morris, T. Nicoletti, B. Oerter, C. Pearson, S. Peggs, A. Pendzick, F.C. Pilat, V. Ptitsyn, T. Roser, J. Sandberg, T. Satogata, C. Schultheiss, A. Sidi-Yekhlef, L. Smart, S. Tepikian, R. Tomas, D. Trbojevic, N. Tsoupas, J. Tuozzolo, J. Van Zeijts, K. Vetter, K. Yip, A. Zaltsman, S.Y. Zhang, W. Zhang
    BNL, Upton, Long Island, New York
 
  After an exploratory phase, during which a number of beam parameters were varied, the RHIC experiments now demand high luminosity to study heavy ion collisions in detail. Presently RHIC operates routinely above its design luminosity. In the first 4 weeks of its current operating period (Run-4) the machine has delivered more integrated luminosity that during the 14 weeks of the last gold-gold operating period (Run-2). We give an overview of the changes that increased the instantaneous luminosity and luminosity lifetime, raised the reliability, and improved the operational efficiency.  
TUPLT186 Managing System Parameters for SNS Magnets and Power Supplies 1565
 
  • W.J. McGahern, S. Badea, F.M. Hemmer, H.-C. Hseuh, J.W. Jackson, A.K. Jain, F.X. Karl, R.F. Lambiase, Y.Y. Lee, C.J. Liaw, H. Ludewig, G.J. Mahler, W. Meng, C. Pai, C. Pearson, J. Rank, D. Raparia, J. Sandberg, S. Tepikian, N. Tsoupas, J. Tuozzolo, P. Wanderer, J. Wei, W.-T. Weng
    BNL, Upton, Long Island, New York
  • R. Cutler, J.J. Error, J. Galambos, M.P. Hechler, S. Henderson, P.S. Hokik, T. Hunter, G.R. Murdoch, K. Rust, J.P. Schubert
    ORNL/SNS, Oak Ridge, Tennessee
 
  The Spallation Neutron Source (SNS), currently under construction at Oak Ridge, Tennessee, is a collaborative effort of six U.S. Department of Energy partner laboratories. With over 312 magnets and 251 power supplies that comprise the beam transport lines and the accumulator ring, it is a challenge to maintain a closed loop on the variable parameters that are integral to these two major systems. This paper addresses the input variables, responsibilities and design parameters used to define the SNS magnet and power supply systems.  
TUPKF063 Current Status of the Next Linear Collider X-band Klystron Development Program 1090
 
  • D.W. Sprehn, G. Caryotakis, A.A. Haase, E.N. Jongewaard, C. Pearson
    SLAC, Menlo Park, California
 
  Klystrons capable of driving accelerator sections in the Next Linear Collider have been developed at SLAC during the last decade. In addition to fourteen 50 MW solenoid-focused devices and a 50 MW Periodic Permanent Magnet focused (PPM) klystron, a 500 kV 75 MW PPM klystron was tested in 1999 to 80 MW with 3-microsecond pulses, but very low duty. Subsequent 75 MW prototypes aimed for low-cost manufacture by employing reusable focusing structures external to the vacuum, similar to a solenoid electromagnet. During the PPM klystron development, several partners (CPI, EEV and Toshiba) have participated by constructing partial or complete PPM klystrons. After early failures during testing of the first two devices, SLAC has recently tested this design (XP3-3) to the full NLC specifications of 75 MW, 1.6 microseconds pulse length, and 120 Hz. This 14.4 kW operation came with a tube efficiency of 50%. The XP3 3 average and peak output power, together with the focusing method, arguably makes it the most advanced high power klystron ever built anywhere in the world. Design considerations and the latest testing results for these latest prototypes will be presented.