A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Park, K.-H.

Paper Title Page
TUPLT095 Precision Field Mapping System for Cyclotron Magnet 1378
 
  • K.-H. Park, Y.G. Jung, D.E. Kim, L.W.W. Lee
    PAL, Pohang
  • J.-S. Chai, Y.S. Kim
    KIRAMS, Seoul
  • B.-K. Kang, S.H. Shin, M. Yoon
    POSTECH, Pohang, Kyungbuk
 
  A 13 MeV cyclotron has been developed by KIRAMS for radio-isotopes production such as F-18 and O-15 for positron emission tomography(PET). To characterize the cyclotron magnet precisely, a Hall probe mapping system with very high precise positioning mechanism in the Cartesian coordinate has been developed. Hall probe assembly was translated in two dimensions by two stepping motors at both sides of the Hall-probe-carrier to keep synchronously rotation sharing one step-pulse source for x-axis and one motor for y-axis. The data acquisition time had reduced to 60 minutes in full mapping by 'flying' mode. The accuracy of the measurement system is better than during the entire mapping process. In this paper the magnetic field measurement system for the cyclotron magnet is described, and measurement results are presented.  
WEPKF049 Stretched Wire Flip Coil System for Magnetic Field Measurements 1714
 
  • D.E. Kim, C.W. Chung, H.S. Han, Y.G. Jung, H.G. Lee, W.W. Lee, K.-H. Park, H.S. Suh
    PAL, Pohang
 
  A flip-coil system using a stretched wire measuring the magnetic field properties of accelerator magnets is described. This system is similar to the conventional rotating coil system except that the stretched wires are used instead of wires wound on the machined surface. This system has advantage of simple fabrication and flexible operation so that different length and bore magnets can be easily measured using the same system. The system also has two loop coils to buck the dominant fundamental field so as to increase the measurement accuracy. This kind of system has issues related to the reproducibility, accuracy of the measured results. The system is evaluated to verify its performances and its results were discussed. The analyzing methods and various efforts to keep the system in high accuracy are presented. Measurement results with this loop coil system were compared with that of the other system.