A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Opanasenko, A.

Paper Title Page
THPKF066 Conception of X-ray Source Based on Compact Wakefield Undulator 2412
 
  • A. Opanasenko
    NSC/KIPT, Kharkov
 
  Study of interaction of bunched charged ultrarelativistic particles with own wakefields in periodic rf structures detects new applications in the area of accelerator physics and technology. Conception of monochromatic X-ray source based on wakefield undulator, WFU, with very short period is presented. In the base of photon generation by the WFU lies a new mechanism of undulator-type radiation emitted by an ultrarelativistic electron bunch that undulates due to non-synchronous spatial harmonics of its wakefields while the bunch moves along a periodic waveguide. The features of the hard radiation and yield of photons depending on waveguide sizes and charge distribution are considered. The creation of the WFU with sub-millimetre periods due to advanced accelerator technology, such as deep X-ray lithography, opens possibilities to obtain high brightness X-rays at employing comparatively low electron energies without external alternative fields. That can have commercial significance for technological and medical applications.  
THPLT124 Simulation Technique for Study of Transient Self-consistent Beam Dynamics in RF Linacs 2759
 
  • V.V. Mytrochenko, A. Opanasenko
    NSC/KIPT, Kharkov
 
  The report describes a simulation technique for study of unsteady self-consistent dynamics of charged particles in resonant linacs. The technique allows simulating the linacs that consist of resonant cavities and traveling wave sections. The proposed approach is based on unsteady theories of excitation of resonant cavities and waveguides by a beam of charged particles and RF feeders. The theory of waveguide excitation is generalized to the case of spatially inhomogeneous traveling wave structures. The system of self-consistent differential equations for fields and motion of particles is integrated over time and space. The SUPERFISH code is used to evaluate characteristics of the axially symmetrical cavities and traveling wave sections. The PARMELA code is applied to simulate motion of the particles at each time step of the integration. In such a way the fields and beam characteristics in the axially symmetrical accelerating structures can be obtained for transient and steady state operation. Description of the algorithm and results of its validation are presented.