A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Olry, G.

Paper Title Page
TUPKF019 Recent Developments on Superconducting b035 and b015 Spoke Cavities at IPN for Low and Medium Energy Sections of Proton Linear Accelerators. 1003
 
  • G. Olry, J.-L. Biarrotte, S. Blivet, S. Bousson, F. Chatelet, D. Gardès, N. Hammoudi, T. Junquera, J. Lesrel, C. Miélot, A.C. Müller, D. Ruffier, H. Saugnac, P. Szott, J.P. Thermeau
    IPN, Orsay
 
  Spoke cavities studies leaded by IPN-Orsay, for both XADS and EURISOL projects, are fully integrated within the 5th and 6th European Framework Programs. During 2003, several tests have been performed on the first b035 spoke cavity prototype. They have demonstrated the great potential of this type of cavity in term of RF performances (Eacc max=12.5 MV/m at T=4.2 K) and mechanical behavior (very low sensitivity to errors fabrication, good stiffness…). Following the upgrade of our cryogenic facility, we have tested, this spring, the cavity at 2 K. These new results will be presented in this paper. In parallel, the fabrication of a new spoke cavity (2-gap, 352 MHz, b015) has begun in January. While keeping the same geometry than that of the b035 cavity, we carried out significant changes on the coupler port and stiffening system designs. We report here in particular, RF calculations concerning the new location of the coupler port (in order to minimize losses due to magnetic field) and also, mechanical calculations about the new stiffening ring. Finally, we will present the preliminary thought on modular cryomodule which are based on the ?short? cryomodule concept used with the Quarter Wave Resonators for the SPIRAL-2 project.  
TUPLT058 High Intensity Linac Driver for the SPIRAL-2 Project : Design of Superconducting 88 MHz Quarter Wave Resonators (beta 0.12), Power Couplers and Cryomodules 1285
 
  • T. Junquera, J.-L. Biarrotte, S. Blivet, S. Bousson, C. Commeaux, G. Olry, H. Saugnac
    IPN, Orsay
  • P. Balleyguier
    CEA/DAM, Bruyères-le-Châtel
  • M. Fruneau, Y. Gomez-Martinez, E. Vernay, F. Vezzu
    LPSC, Grenoble
 
  A Superconducting Linac Driver, delivering deuterons with energy up to 40 MeV (5 mA) and heavy ions with energy of 14.5 MeV/u (1 mA ), is proposed for the Spiral-2 radioactive beams facility. For the high energy section of the linac, a superconducting 88 MHz Quarter Wave Resonator (beta 0.12) has been designed and the optimisation of RF and mechanical performances will be presented. Based on the present state-of-art of the Superconducting RF technology, maximum electric surface field of 40 MV/m and magnetic surface field of 80 mT, have been adopted which should allow to reach an accelerating field of 7 MV/m (energy gain 3 MeV per resonator). A first complete prototype is under construction. The high intensity deuteron beam specifications have imposed the design of an original power coupler (maximum power 20 KW). The RF, mechanical, and thermal characteristics will be presented. The design of the cryomodule for this high energy section, integrating two QWR with its associated equipments (couplers, tuners, helium tanks), will be presented.