A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

North, W.

Paper Title Page
TUPKF065 Comparison of Klystron and Inductive Output Tubes (IOT) Vacuum-electron Devices for RF Amplifier Service in Free-electron Laser 1093
 
  • A. Zolfaghari, P. MacGibbon, W. North
    MIT/BLAC, Middleton, Massachusetts
 
  The MIT X-Ray Laser project, conceived to produce output in the 0.3 to 100 nanometer range, is based on a super-conducting 4-GEV linear accelerator, using 24 multi-cavity cryo-modules, each with its own dedicated RF amplifier, operating at 1.3 GHz. The continuous output of each amplifier is nominally 15 kW, with an optional repetitive pulse-modulation mode of 0.1 second pulse duration at one pulse per second. Although there are no fundamental restraints which preclude the consideration of any RF amplifier type, including solid-state or conventional triode or tetrode, the most appropriate current technology includes the Klystron and the IOT (Inductive Output Tube), also known by the CPI trade-name, Klystrode. The mechanisms by which the devices convert DC input power into RF output power are discussed. The devices are then compared with regard to availability (developmental or off-the-shelf), conversion efficiency, means of pulse-modulation, RF power gain, phase and amplitude stability (pushing factors), and acquisition and life-cycle costs.