A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Ninomiya, S.

Paper Title Page
TUPKF031 Non-resonant Accelerating System at the KEK-PS Booster 1027
 
  • S. Ninomiya, M. Muto, M. Toda
    KEK, Ibaraki
 
  The non-resonant accelerating system for the KEK-PS booster accelerator has been constructed. The system has been operating since October 2003 without trouble. The accelerating gap in the system is loaded with magnetic cores of high permeability. The cores produce high resistive impedance at the gap. The power dissipated in the cores amounts to 50kW at 16kV accelerating voltage. It is removed by forced-air cooling system. At the last operation of the accelerator, with the help of new COD-correction system, the average beam intensity of the booster increased to 2.6E+12ppp, which is 30% higher than before.  
TUPKF032 COD Correction by Novel Back-leg at the KEK-PS Booster 1030
 
  • S. Ninomiya, K. Satoh, H. Someya, M. Toda
    KEK, Ibaraki
 
  The COD correction is performed by using new driving system of back-leg windings. Two back-leg coils of the separate magnets are connected to make a closed circuit in which the induced voltages of the two magnets have opposite phases to each other. When the current source is inserted into the closed loop, the current drives the two magnets with opposite polarities. If the pair of magnets is properly selected, the current effectively corrects the orbit distortion. The selection rule of the pair is as follows; one is the magnet at the maximum distortion and the second magnet is that separated with the betatron phase of -90deg. The correction system at the KEK-PS Booster reduced the COD to less than 1/5 of that without correction, and increased the capture efficiency. The average beam intensity of our Booster is increased from 2E+12 to 2.6E+12ppp.  
MOPLT070 FFAG as Phase Rotator for the PRISM Project 713
 
  • A. Sato, M. Aoki, Y. Arimoto, Y. Kuno, M. Yoshida
    Osaka University, Osaka
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto
  • S. Machida, Y. Mori, C. Ohmori, T. Yokoi, K. Yoshimura
    KEK, Ibaraki
  • S. Ninomiya
    RCNP, Osaka
 
  A Fixed Field Alternating Gradient (FFAG) ring will be used as a phase rotator in the PRISM project. We report a design of the PRISM-FFAG in this paper. PRISM stands for "Phase Rotated Intense Slow Muon beam". It is a project to realize a super muon beam, which combines high-intensity, low-energy, narrow energy-spread and high purity. Its aimed intensity is about 1011-1012 muons per sec. The muon beam will be provided with a low kinetic energy of 20MeV to optimize for the stopped muon experiments. FFAG has some advantageous characteristics to achieve such superb beam. These are a large momentum (longitudinal) acceptance, a wide transverse acceptance with strong focusing, and synchrotron oscillation, which is needed to perform phase rotation. According to simulations, initial energy spread of 20MeV±40% is reduced down to ±6% after 5 turns of muons in the FFAG ring. In the FFAG ring almost all pions decay into muon, hence extracted beam has extremely low pion contamination. A program to construct the PRISM-FFAG ring has been started. It would be completed by the end of JFY 2005.  
WEPLT102 Electron Cooling Experiments at HIMAC Synchrotron 2086
 
  • K. Noda, T. Furukawa, T. Honma, S. Shibuya, D. Tan, T. Uesugi
    NIRS, Chiba-shi
  • T. Iwashima
    AEC, Chiba
  • I.N. Meshkov, E. Syresin
    JINR, Dubna, Moscow Region
  • S. Ninomiya
    RCNP, Osaka
 
  In the HIMAC synchrotron, the electron cooling experiments have been carried out since 2000 in order to develop new technologies in heavy-ion therapy and related research. Among of them, especially, the cool-stacking method has been studied to increase the intensity of heavy ions such as Fe and Ni in order to study the risk estimation of the radiation exposure in space. The simulation was carried out in order to optimize the stacking intensity under various the injection periods. In addition, the beam heating by the RF-KO and the clearing the secondary ion in the cooler were applied to avoid the instability occurred when the beam density became high. We will report the experiment results.