A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Ng, C.-K.

Paper Title Page
MOPLT134 X-Band Linear Collider R&D in Accelerating Structures through Advanced Computing 851
 
  • Z. Li, N.T. Folwell, L. Ge, A. Guetz, V. Ivanov, K. Ko, M. Kowalski, L. Lee, C.-K. Ng, G. Schussman, R. Uplenchwar
    SLAC, Menlo Park, California
  • M. Wolf
    University of Illinois, Urbana
 
  The X-band linear collider design, GLC/NLC, requires accelerating structures in the main linac to operate at 65 MV/m and to be able to control emittance growth due to dipole wakefields generated by 100 micron bunch trains. The approach to high gradient has focused mainly on testing structures for acceptable breakdown rates at the desired gradient through experiments since the problem is analytically challenging. In suppressing dipole wakefields, the damped, detuned structure (DDS) has shown capable of meeting design requirements but the analysis using equivalent circuits has thus far been limited to the lowest two dipole bands. This paper describes a computational approach that addresses these design issues through large-scale simulations, using a suite of parallel electromagnetic codes developed under the DOE SciDAC Accelerator Simulation Project. Numerical results on peak field calculation, dark current generation, and wakefield computation will be presented on the H60VG4S17 DDS structure, considered to be the baseline design for the NLC.  
THPKF082 The Completion of SPEAR 3 2448
 
  • R.O. Hettel, R. Akre, S. Allison, P. Bellomo, R.F. Boyce, L. Cadapan, R. Cassel, B. Choi, W.J. Corbett, D. Dell'Orco, T. Elioff, I. Evans, R. Fuller, S. Hill, D. Keeley, N. Kurita, J. Langton, G. Leyh, C. Limborg-Deprey, D. Macnair, D.J. Martin, P.A. McIntosh, E. Medvedko, C.-K. Ng, I. Nzeadibe, J. Olsen, M. Ortega, G.C. Pappas, S. Park, T. Rabedeau, H. Rarback, A. Ringwall, P. Rodriguez, J.A. Safranek, H.D. Schwarz, B. Scott, J.J. Sebek, S. Smith, T. Straumann, J. Tanabe, A. Terebilo, T.A. Trautwein, C. Wermelskirchen, M. Widmeyer, R. Yotam, K. Zuo
    SLAC/SSRL, Menlo Park, California
 
  On December 15, 2003, 8 1/2 months after the last electrons circulated in the old SPEAR2 storage ring and 5 days after the beginning of commissioning, the first electrons were accumulated in the completely new SPEAR3 ring. The rapid installation and commissioning is a testimony to the SPEAR3 project staff and collaborators who have built an excellent machine and equipped it with powerful and accessible machine modeling and control programs. The final year of component fabrication, system implementation and testing, the 7-month installation period leading up to the beginning of commissioning, and lessons learned are described.