A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Mytrochenko, V.V.

Paper Title Page
TUPLT133 Test Results of Injector Based on Resonance System with Evanescent Oscillations 1437
 
  • S.A. Perezhogin, M.I. Ayzatskiy, E.Z. Biller, K. Kramarenko, V.A. Kushnir, V.V. Mytrochenko, Z.V. Zhiglo
    NSC/KIPT, Kharkov
 
  Report presents results of tune-up and tests of the compact electron S ? band injector consisting of the low-voltage diode electron gun and the bunching system based on the resonant system with the evanescent oscillation. In the considered bunching system electrical field increased from beam entrance to an exit of the buncher. The injector designed for bunching of electron beam with initial energy of 25 keV and pulse current of 300 mA and accelerating it to the energy of 1 MeV.  
THPLT124 Simulation Technique for Study of Transient Self-consistent Beam Dynamics in RF Linacs 2759
 
  • V.V. Mytrochenko, A. Opanasenko
    NSC/KIPT, Kharkov
 
  The report describes a simulation technique for study of unsteady self-consistent dynamics of charged particles in resonant linacs. The technique allows simulating the linacs that consist of resonant cavities and traveling wave sections. The proposed approach is based on unsteady theories of excitation of resonant cavities and waveguides by a beam of charged particles and RF feeders. The theory of waveguide excitation is generalized to the case of spatially inhomogeneous traveling wave structures. The system of self-consistent differential equations for fields and motion of particles is integrated over time and space. The SUPERFISH code is used to evaluate characteristics of the axially symmetrical cavities and traveling wave sections. The PARMELA code is applied to simulate motion of the particles at each time step of the integration. In such a way the fields and beam characteristics in the axially symmetrical accelerating structures can be obtained for transient and steady state operation. Description of the algorithm and results of its validation are presented.