A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Müller, W.F.O.

Paper Title Page
MOPKF027 Optimizing the PITZ Electron Source for the VUV-FEL 360
 
  • M. Krasilnikov, J. Bähr, U. Gensch, H.-J. Grabosch, J.H. Han, D. Lipka, V. Miltchev, A. Oppelt, B. Petrosyan, D. Pose, L. Staykov, F. Stephan
    DESY Zeuthen, Zeuthen
  • K. Abrahamyan
    YerPhI, Yerevan
  • W. Ackermann, R. Cee, W.F.O. Müller, S. Setzer, T. Weiland
    TEMF, Darmstadt
  • G. Asova, G. Dimitrov, I. Tsakov
    INRNE, Sofia
  • I. Bohnet, J.-P. Carneiro, K. Floettmann, S. Riemann, S. Schreiber
    DESY, Hamburg
  • M.V. Hartrott, E. Jaeschke, D. Krämer, R. Richter
    BESSY GmbH, Berlin
  • P. Michelato, L. Monaco, C. Pagani, D. Sertore
    INFN/LASA, Segrate (MI)
  • J. Rossbach
    Uni HH, Hamburg
  • W. Sandner, I. Will
    MBI, Berlin
 
  The goal of the Photo Injector Test Facility at DESY Zeuthen (PITZ) is to test and optimize electron sources for Free Electron Lasers and future linear colliders. At the end of 2003 the first stage of PITZ (PITZ1) has been successfully completed, resulting in the installation of the PITZ RF gun at the Vacuum Ultra Violet - Free Electron Laser (VUV-FEL) at DESY Hamburg. The main results achieved during the PITZ1 extensive measurement program are discussed in this paper. A minimum normalized beam emittance of about 1.5 pi mm mrad for 1 nC electron bunch charge has been reached by optimizing numerous photo injector parameters, e.g. longitudinal and transverse profiles of the photocathode laser, RF phase, main and bucking solenoid current. The second stage of PITZ (PITZ2), being a large extension of the facility and its research program, has started now. Recent progress on the PITZ2 developments will be reported as well.  
TUPKF014 Electromagnetic Design of New RF Power Couplers for the S-DALINAC 988
 
  • M. Kunze, W.F.O. Müller, T. Weiland
    TEMF, Darmstadt
  • M.B. Brunken, H.-D. Gräf, A. Richter
    TU Darmstadt, Darmstadt
 
  New rf power couplers for the Superconducting Darmstadt Linear Accelerator (S-DALINAC) injector have to be designed to transfer rf power up to 2 kW to the electron beam. This allows injector operation at beam currents from 0.15 mA to 0.2 mA and electron energies up to 14 MeV. The new couplers should possibly provide a variable external Q in the range from 5·106 to 3·109 and a small transverse kick. A variable coupling is needed to allow for perfect matching in the case of beam loading and when no beam is present, respectively. The second operation stage is used for cavity diagnostics. The asymmetric field distribution of the couplers generates emittance growth of the electron beam and therefore the transverse kick has to be minimized. Electromagnetic simulations are applied to investigate different coupler designs and to localize possible problems at an early stage. Cavity external Q and transverse kick can be calculated from 3D electromagnetic eigenmode solutions. The present coaxial-coaxial input couplers at the S-DALINAC are limited to power operation below 500 W under full reflection. Therefore, to reach power operation up to 2 kW two possible new realizations of low-kick waveguide couplers for the S-DALINAC injector are presented, namely a single-waveguide and a twin-waveguide coupler.  
TUPLT022 Beam Dynamics Simulations at the S-DALINAC for the Optimal Position of Beam Energy Monitors 1186
 
  • B. Steiner, W.F.O. Müller, T. Weiland
    TEMF, Darmstadt
  • A. Richter
    TU Darmstadt, Darmstadt
 
  The S-DALINAC is a 130 MeV superconducting recirculating electron accelerator serving several nuclear and radiation physics experiments as well as driving an infrared free-electron laser. For the experiments an energy stability of 1·10-4 should be reached. Therefore noninvasive beam position monitors will be used to measure the beam energy. For the measurement the different flight time of the electrons to the ideal particle are compared, that means in the simulations the longitudinal dispersion of the beam transport system is used for the energy detection. The results of the simulations show that it is possible to detect an energy difference of 1·10-4 with this method. The results are also proven by measurements.