A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Mori, Y.

Paper Title Page
MOPLT070 FFAG as Phase Rotator for the PRISM Project 713
 
  • A. Sato, M. Aoki, Y. Arimoto, Y. Kuno, M. Yoshida
    Osaka University, Osaka
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto
  • S. Machida, Y. Mori, C. Ohmori, T. Yokoi, K. Yoshimura
    KEK, Ibaraki
  • S. Ninomiya
    RCNP, Osaka
 
  A Fixed Field Alternating Gradient (FFAG) ring will be used as a phase rotator in the PRISM project. We report a design of the PRISM-FFAG in this paper. PRISM stands for "Phase Rotated Intense Slow Muon beam". It is a project to realize a super muon beam, which combines high-intensity, low-energy, narrow energy-spread and high purity. Its aimed intensity is about 1011-1012 muons per sec. The muon beam will be provided with a low kinetic energy of 20MeV to optimize for the stopped muon experiments. FFAG has some advantageous characteristics to achieve such superb beam. These are a large momentum (longitudinal) acceptance, a wide transverse acceptance with strong focusing, and synchrotron oscillation, which is needed to perform phase rotation. According to simulations, initial energy spread of 20MeV±40% is reduced down to ±6% after 5 turns of muons in the FFAG ring. In the FFAG ring almost all pions decay into muon, hence extracted beam has extremely low pion contamination. A program to construct the PRISM-FFAG ring has been started. It would be completed by the end of JFY 2005.  
TUPLT077 R&D Status of the Fast Extraction Kicker Magnets for the KEK/JAERI 50 GeV Synchrotron 1333
 
  • Y. Shirakabe, Y. Arakaki, T. Kawakubo, Y. Mori, S. Murasugi, E. Nakamura, I. Sakai, M. Tomizawa
    KEK, Ibaraki
 
  The 50 GeV proton synchrotron composes the final stage of the high intensity proton accelerator complex now on construction at JAERI/Tokai site as a joint project by KEK and JAERI. In this ring, the proton beam is accelerated from 3 GeV to 50 GeV, and delivered to the experimental facilities through the fast and slow extraction lines. The distinctive feature of the fast extraction line is that the bipolar extraction function will be provided. In normal operations, the beam is extracted toward the inner side of the ring and transported to the facility for the long baseline neutrino oscillation experiment using the Super-Kamiokande detector. In case of emergency, for example, quenches of the superconducting magnets of the neutrino line or malfunctioning of the ring RF systems, the beam is extracted toward the outer side of the ring and sent directly to the abort line with a beam dump at the end. In the current kicker design, the bipolar function will be achieved by the Symmetric Blumlein PFN (SBPFN) system with two switches on both ends. The designed parameters of the fast extraction kicker magnets and the recent hardware R&D status will be described in this paper.  
TUPLT079 Opposite Field Septum Magnet System for the J-PARC 50GeV Ring Injection 1339
 
  • I. Sakai, Y. Arakaki, K. Fan, Y. Mori, M. Muto, Y. Saitou, Y. Shirakabe, M. Tomizawa, M. Uota
    KEK, Ibaraki
  • K. Gotou, Y. Morigaki, A. Nishikawa, M. Takahashi
    IHI/Yokohama, Kanagawa
  • H. Mori, A. Tokuchi
    NICHICON, Shiga
 
  For the injection/extraction system of the high energy high intensity proton synchrotrons, high field wide aperture thin septum magnets are required. To solve these tight problems, new design concept of opposite-field septum magnet system has been invented. The same grade of opposite magnetic field is produced both inside and outside of the septum. The electromagnetic force and leakage flux around the septum conductor are cancelled out each other. The magnetic field of the circulating beam side is compensated by two sub-bending magnets set on the up-stream and down-stream of the opposite fields septum magnet. The beam-separation angle per magnet length is twice as large as normal septum magnet and the two sub-bending magnets also have a role to extend the injection/extraction angle. The newly developed method of the opposite field septum magnets system.is applied to the injection septum magnets for the J-PARC 50-GeV proton synchrotron to get the sufficient injection angle and clearance for low loss injection. The thin septum thickness and larger kick angle at the septum magnet can be obtained by the new system, which is applicable to many accelerators.  
WEPLT107 Nonlinear field Effects in the JPARC Main Ring 2098
 
  • A.Y. Molodojentsev, S. Machida, Y. Mori
    KEK, Ibaraki
 
  Main Ring (MR) of the Japanese Particle Accelerator Research Complex (JPARC) should provide acceleration of the high-intensity proton beam from the energy of 3GeV to 50 GeV. The expected beam intensity is 3.3·1014 ppp and the repetition rate is about 0.3 Hz. The imaginary transition lattice of the ring was adopted, which has the natural linear chromaticity about (-30) for both transverse phase planes. The expected momentum spread of the captured particles before the acceleration is less than 0.007. Two independent families of the chromatic sextupole magnets are use to eliminate the linear chromatic tune shift. This chromatic sextupole field nonlinearity will excite the normal 'octupole' resonances and will lead to the amplitude dependent tune shifts in both transverse phase planes. Additional sextupole magnets are planed to excite the third-order horizontal resonance, which will be used for the slow extraction. Incoherent tune shift of the low-energy proton beam is about (-0.16) so that some particles could cross nearest low-order resonances. Optimization of the 'bare' working point of MR at the injection energy has been performed to minimize the influence of the linear coupling and high-order coupling resonances. Excitation of the linear coupling resonance has been introduced by the realistic misalignment errors adopted for MR. The 'bare' working point during the slow extraction has been analyzed. The influence of the normal sextupole resonances on the large amplitude particle behavior at the scraper location has been studied including random sextupole field component of the MR bending magnets. Realistic distortion of the ideal ring super-periodicity by the injection kicker magnets has been included in the tracking procedure for the on- and off-momentum particles. Finally, correction schemes have been considered for most dangerous resonances around the optimized 'bare' working point. The space-charge effects of the proton beam have not been included in this study.  
WEPLT115 A Study of Transverse Resonance Crossing in FFAG 2116
 
  • M. Aiba
    University of Tokyo, Tokyo
  • S. Machida, Y. Mori
    KEK, Ibaraki
 
  A study of "resonance crossing" in FFAG accelerator is described in this paper. A deviation of FFAG guiding field in actual magnet breaks zero chromaticity condition, and tunes cross resonance while acceleration. In order to avoid a critical beam loss or emittance growth, nominal tune should be chosen so as not to cross low-order resonances. However, crossing higher order resonance can be critical and that depends on the parameters such as crossing speed, excitation magnitude and initial beam emittance. We will present analytical model and simulation study in various parameter space.  
THPLT066 Commissioning of 150MeV FFAG Synchronisation 2640
 
  • Y. Yonemura, M. Matoba
    Kyushu University, Fukuoka
  • M. Aiba, M. Sugaya
    University of Tokyo, Tokyo
  • S. Machida, Y. Mori, A. Muto, J. Nakano, C. Ohmori, I. Sakai, Y. Sato, A. Takagi, T. Yokoi, M. Yoshii, M. Yoshimoto, Y. Yuasa
    KEK, Ibaraki
  • T. Uesugi
    NIRS, Chiba-shi
  • A. Yamazaki
    LNS, Sendai
 
  A 150MeV proton FFAG (Fixed Field Alternating Gradient) synchrotron has been constructed to be a prototype for various applications such as proton beam therapy. At the moment, all the components are assembled, and multi-turn injection and beam storage were successfully performed. We are in the phase of beam acceleration up to final energy and expect the beam extraction in a few months. In this paper, beam commissioning results such as multi-turn injection, orbit correction, tune survey and optimization of RF gymnastics will be presented.  
THPLT078 Construction of FFAG Accelerators in KURRI for ADS Study 2673
 
  • M. Tanigaki, K. Mishima, S. Shiroya
    KURRI, Osaka
  • S. Fukumoto, Y. Ishi
    Mitsubishi Electric Corp, Energy & Public Infrastructure Systems Center, Kobe
  • M. Inoue
    SLLS, Shiga
  • S. Machida, Y. Mori
    KEK, Ibaraki
 
  KART (Kumatori Accelerator driven Reactor Test) project has started at Kyoto University Research Reactor Institute (KURRI) from the fiscal year of 2002. The purpose of this project is to demonstrate the basic feasibility of ADS, studying the effect of incident neutron energy on the effective multiplication factor of the subcritical nuclear fuel system. We are now constructing a proton FFAG accelerator complex as a neutron production driver for this project. Our accelerator complex consists of a 2.5 MeV FFAG betatron as an injector and 20 MeV and 150 MeV FFAG synchrotrons as a booster and a main ring, respectively. Our FFAG betatron is a spiral sector type. Both booster and main rings are radial sector type FFAG synchrotrons, but different in the production of required magnetic field with a certain magnetic field index. The distribution of magnetic field is determined by the shaped pole-face in the main ring while the magnetic field is realized by use of trim coils in the booster ring. This FFAG complex will be combined with our Kyoto University Critical Assembly (KUCA) in KURRI by the end of March 2006 and the experiments will begin as soon as the whole system is ready.