A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Merz, W.

Paper Title Page
WEPKF028 High Charge Transfer Operation of Light Trigged Thrystor Crowbars 1660
 
  • W. Merz
    DESY, Hamburg
 
  High power klystrons are protected by the application of crowbar switches. The closing switch approach is most commonly used. It is characterized by establishing a short circuit path to bypass the klystron fault current. During short circuit operation the crowbar switch must be capable to carry both puls current of the filter capacitor and follow through current of the high voltage dc power supply. Depending on the main circuit parameters both the capacitor charge and the follow through charge can achieve significant amounts. The application of line controlled and uncontrolled hvdc power converters requires special attention regarding the follow through current charge transfer. This paper presents first practical results of series connected Light Triggered Thyristors (LTT) operating as closing crowbar switches. Measured data are discussed, which have been obtained from the DESY-II installation operating with thyristor controllers and the PETRA installation operating with uncontrolled rectifiers. Beside the puls operation the follow through current capability of the crowbar is pointed out.  
TUPKF068 JLAB Hurricane Recovery 1102
 
  • A. Hutton, D. Arenius, F.J. Benesch, S. Chattopadhyay, E. Daly, V. Ganni, O. Garza, R. Kazimi, R. Lauze, L. Merminga, W. Merz, R. Nelson, W. Oren, M. Poelker, T. Powers, J.P. Preble, C. Reece, R.A. Rimmer, M. Spata, S. Suhring
    Jefferson Lab, Newport News, Virginia
 
  Hurricane Isabel, originally a Category 5 storm, arrived at Jefferson Lab on September 18 with winds of only 75 mph creating little direct damage to the infrastructure. However, electric power was lost for four days allowing the superconducting cryomodules to warm up and causing a total loss of the liquid helium. The subsequent recovery of the cryomodules and the impact of the considerable amount of opportunistic preventive maintenance provides important lessons for all accelerators complexes, not only those with superconducting elements. The details of how the recovery process was structured and the resulting improvement in accelerator availability will be discussed in detail.