A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Marque, S.

Paper Title Page
TUPKF003 Industrial Production of the Eight Normal-conducting 200 MHz ACN Cavities for the LHC 956
 
  • R. Losito, E. Chiaveri, R. Hanni, T.P.R. Linnecar, S. Marque, J. Tuckmantel
    CERN, Geneva
 
  The LHC-ACN RF system consists of 8 normal-conducting cavities and is designed to reduce beam losses in the LHC when injecting beams with longitudinal emittance > 0.7 eVs from the CERN SPS. The cavity design took into account the possibility of recuperating all the "ancillary" equipment (tuners, fundamental mode damper, High Order Mode (HOM) couplers) from the old CERN SPS 200MHz system. The cavities are made from OFE copper. The original ingots, procured in Austria, have been forged and pre-formed by pressing them with a 20 tons press, following a procedure defined and adapted for the unusual dimensions of these pieces. The raw components thus obtained were machined and then welded together with an electron beam. In order to get a good repeatability of the fundamental mode frequency across the eight cavities, a procedure has been established with the contractor for the final machining and welding leading to a spread in frequencies below ±20 kHz (< 0.01%). The cavities will be installed in the LHC when losses at high intensities become significant. In the meantime they are undergoing a surface treatment to clean the RF surface and will be stored.  
WEPLT027 Connection Cryostats for LHC Dispersion Suppressors 1885
 
  • S. Marque, T. Colombet, M. Genet, B. Skoczen
    CERN, Geneva
 
  The lattice of the Large Hadron Collider (LHC) being built at CERN is based on 8 standard arcs of 2.8 km length. Each arc is bounded on either side by Dispersion Suppressors connected to the arc by connection cryostats providing 15m long drift spaces. As for a dipole magnet, the connection cryostat provides a continuity of beam and insulation vacuum, electrical powering, cryogenic circuits, thermal and radiation shielding. In total 16 modules will be constructed. The stringent functional specification has led to various analyses. Among them, a light mechanical structure has been developed to obtain a stiffness comparable to a dipole magnet, for alignment purpose. Thermal studies, included λ front propagation, have been performed to ensure a cooling time down to 1.9K within the time budget. A special cooling scheme around the beam tubes has been chosen to cope with heat loads produced during operation. We will report on the general design of the module and on the manufacturing process adopted to guarantee the tight alignment of the beam tubes once the module installed in the machine. Special emphasis will be given on thermo-mechanical analysis, λ front propagation and on beam-tubes cooling scheme.