A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Lomonosov, I.

Paper Title Page
MOPLT042 Interaction of the CERN Large Hadron Collider (LHC) Beam with Solid Metallic Targets 641
 
  • N.A. Tahir, D.H. Hoffmann
    GSI, Darmstadt
  • V. Fortov, I. Lomonosov, A. Shutov
    IPCP, Chernogolovka, Moscow region
  • B. Goddard, V. Kain, R. Schmidt
    CERN, Geneva
  • R. Piriz, M. Temporal
    Universidad de Castilla-La Mancha, Ciudad Real
 
  The LHC will operate at 7 TeV with a luminosity of 1034 cm-2s-1. This requires two beams, each with 2808 bunches. The nominal intensity per bunch is 1.1 1011 protons. The energy stored in each beam of 350 MJ could heat and melt 500 kg of copper. Protection of machine equipment in the presence of such powerful beams is essential. In this paper the mechanisms causing equipment damage in case of a failure of the machine protection system are discussed. An energetic heavy ion beam induces strong radial hydrodynamic motion in the target that drastically reduces the density in the beam heated region [*], leading to a much longer range for particles in the material. For the interaction of the LHC proton beams with a target a similar effect is expected. We carried out two-dimensional hydrodynamic simulations of the heating of a solid copper block with a face area of 2cm x 2cm irradiated by the LHC beam with nominal parameters. We estimate that after an impact of about 100 bunches the beam heated region has expanded drastically. The density in the inner 0.5 mm decreases by about a factor of 10. The temperature in this region is about 10 eV and the pressure about 15 GPa. The material in the heated region is in plasma state while the rest of the target is in a liquid state. The bulk of the following beam will not be absorbed and continue to tunnel further and further into the target. The results allow estimating the length of a sacrificial absorber, if such device should be installed for an LHC upgrade. A very interesting "spinoff" from this work would be the study of high-energy-density states of matter induced by the LHC beam, because a specific energy deposition of 200 kJ/g is achieved after 2.5 micros.

* N.Tahir et al., Phys. Rev. E, 63, 2001