A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Liu, K.-B.

Paper Title Page
TUPLT099 A Kicker Pulse Power Supply with Low Jitter 1387
 
  • C.-S. Fann, J.-P. Chiou, S.Y. Hsu, K.-B. Liu
    NSRRC, Hsinchu
 
  The performance of kicker pulse power supplies is the main parameter to increase injection efficiency of storage ring that is an important issue for laboratory of synchrotron radiation research. The output current waveform of a kicker pulse power supply with low timing jitter is our goal for years that must satisfy the Top-Up mode injection requirement of NSRRC. In the past years kicker pulse power supplies of storage ring of NSRRC are immersed in isolation oil to sustain high voltage operational environment that led difficult to maintain, electronic component degrading and uneasy to tune parameters. Air-cooling and air-isolation is adopted in the new design structure for kicker pulse power supply system and an pre-trigger unit MA2709A is installed to trigger thyratron tube CX1536A, a kicker pulse power supply with low timing jitter 1~2ns(p-p) is obtained and could satisfy for Top-Up mode injection and maintenance is more easier than before.  
WEPKF055 Design and Implementation of a Switching Mode Bipolar Power Stage of the Correction Power Supply 1729
 
  • C.-Y. Liu, C.H. Kuo, K.-B. Liu
    NSRRC, Hsinchu
 
  In order to enhance efficiency of the correction power supply, the switching mode bipolar power stage was to implement and to substitute for the original power stage of the correction power supply. To ensure higher efficiency, the programming dc bus voltage of the power stage of the correction power supply must be working in accordance with the output current state and load. A new power conversion stage was constructed and employs power MOSFET operating at higher switching frequency then old 60 Hz energy conversion mode system. This will not only improve the efficiency but also decrease the weight of the correction power supply. The new switching mode power stage supply a bipolar power dc bus power and automatic turning working voltage by the feedback balance circuit. Results and working performance will be presented in this paper.  
WEPKF056 Reducing Output Current Ripple of Power Supply with Component Replacement 1732
 
  • K.-B. Liu, C.-S. Fann
    NSRRC, Hsinchu
 
  Correction magnets of synchrotron storage ring are served with linear power supplies (correction power supply) with 100 ppm output current ripple in National Synchrotron Radiation Research Center. Reducing output current ripple of correction power supply might reduce perturbation of beam position of storage ring. Replace correction power supplies with lower output current ripple ones is straightforward but costs lots of money. Without adding any other circuit and electronic component, some components of correction power supply are replaced by ones with more precious and lower output fluctuation; so that the same circuitry structure of correction power supply is kept without increasing its complexity and could reach 25 ppm output current ripple.  
THPKF046 Feasibility Study of Constant Current Operation at TLS Storage Ring 2377
 
  • G.-H. Luo, H.-P. Chang, J. Chen, C.-C. Kuo, K.-B. Liu, R.J. Sheu, H.-J. Tsai, M.-H. Wang
    NSRRC, Hsinchu
 
  Several top-up experiments were carried out at various upgrade path of Taiwan Light Source. However, there were too many obstacles laid ahead of various stages to prevent the realization of top-up injection routinely. The small gap undulators, the requirement of small emittance operation and high current operation by SC cavity have promoted the top-up injection project to hightest priority. During last one and half years, a series of beam parameters measurement, subsystem checkout, installing various sensors, control program modification and hardware upgrade made the top-up injection more likely in routine operation. Discussions on the results of some measurements of booster and storage ring, the requirement of hardware upgrade and the future executable plan will be presented in this paper.