A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Level, M.-P.

Paper Title Page
MOPKF031 SOLEIL Insertion Devices: The Progress Report 369
 
  • O.V. Chubar, C. Benabderrahmane, A. Dael, M.-P. Level, O. Marcouillé, M. Massal
    SOLEIL, Gif-sur-Yvette
 
  The French national synchrotron radiation source SOLEIL is planned to start operation in 2006 with several different insertion devices installed in the storage ring either from "day one" or within the first year. The list of high-priority insertion devices includes: 3 planar hybrid in-vacuum undulators with the period of 20 mm; 3 Apple-II type PPM undulators with the period of 80 mm; 3 electromagnet elliptical undulators with the period of 256 mm, and a 640 mm period elliptical electromagnet undulator offering advanced possibilities for fine-tuning of polarization states of the emitted radiation. The emission of all these undulators is covering wide spectral range extending from hard X-rays to UV. Pre-design of the IDs was done by SOLEIL. The construction will be done by industrial companies and institutions with production capabilities. Magnetic assembly of the Apple-II and in-vacuum undulators is planned to be done in collaboration with ELETTRA and ESRF. The final magnetic measurements of all the IDs will be made in the SOLEIL magnetic measurements laboratory. The paper will present peculiarities of the magnetic design, calculated maximum-flux spectra and associated heat load in various modes of operation.  
THPKF029 Femto-second Electron Beam Slicing Project at SOLEIL 2329
 
  • O.V. Chubar, M. Idir, M.-P. Level, A. Loulergue, T. Moreno, A. Nadji, L.S. Nadolski, F. Polack
    SOLEIL, Gif-sur-Yvette
 
  The goal of the slicing project at SOLEIL is to provide short (50-100 fs) soft and hard X-rays pulses. The principle is based on the technique demonstrated earlier at ALS. In our case, the naturally suitable phase advances and the horizontal distributed dispersion enable the sliced pulse to be used on several consecutive straight sections. Further separation between the core and the sliced electron beams is obtained by increasing the effective horizontal dispersion using a chicane bracketing the modulator. In the hard X-rays case, the photon beams are separated spatially using a simple slit in a pinhole-camera type configuration while a mixed spatial-angular separation is chosen for the soft X-rays case. This minimizes the amount of parasitic core radiation scattered from the surface of the first focusing mirror. We will first describe the proposed scheme, the impact on the machine and some other issues. Then, photon optics calculation is presented. This takes into account the SOLEIL magnet lattice, realistic parameters of a femto-second laser, peculiarities of spectral distributions of undulator radiation and its diffraction in the range of intensities covering several orders of magnitude.