A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Lee, S.

Paper Title Page
MOPKF020 Proposal for a Sub-100 fs Electron Bunch Arrival-time Monitor for the VUV-FEL at DESY 345
 
  • H. Schlarb, S. Düsterer, J. Feldhaus, J. Hauschildt, R. Ischebeck, K. Ludwig, B. Schmidt, P. Schmüser, S. Simrock, B. Steffen, F. Van den Berghe, A. Winter
    DESY, Hamburg
  • P.H. Bucksbaum, A. Cavalieri, D. Fritz, S. Lee, D. Reis
    Michigan University, Ann Arbor, Michigan
 
  For pump-probe experiments at the VUV-Free Electron Laser at DESY, an external optical laser system will be installed, capable of delivering ultra-short pulses of high intensity. The laser pulses with a center wavelength of 800 nm are synchronized with the VUV-FEL beam which covers the wavelength range between 6 nm and 80 nm. The expected pulse durations are typically 100 fs FWHM or below. For high-resolution pump-probe experiments a precise knowledge of the time difference between both pulses is mandatory. In this paper we describe the layout and the design of a high-precision electron bunch arrival time monitor based on an electro-optic technique. We present the numerical results of simulations that include: the laser propagation in a specifically designed demanding optical system, the laser transport through a 150 m long optical fibre, the electro-optically induced effect in different types of crystals and for different electron bunch shapes as well as the effects of wake fields on the co-propagating electric-fields and their impact on the observable signals.  
THPLT074 The Beam Loss Monitor System of the J-parc LINAC, 3 GEV RCS and 50 GEV MR 2664
 
  • S. Lee, T. Toyama
    KEK, Ibaraki
  • J. Kishiro
    JAERI/LINAC, Ibaraki-ken
  • M. Tanaka
    JAERI, Ibaraki-ken
 
  The high intensity beam accelerator complex itself requires the significant progress of design study and hardware R&D. Operational beam intensity should be limited by the beam loss and activation level of the equipment. Once the beam loss exceeds a criterion at outer environment, beam intensity has to be decreased to prevent the further activation. In order to investigate loss mechanism and suppress the beam loss, a beam loss monitor system have been developed for the J-PARC linac, 3 GeV RCS and 50GeV MR. The system will be essential component for beam commissioning, tuning and machine protection in high intensity beam accelerators. The loss monitor system is composed of scintillator, argon-methane/3He gas filled proportional counter and air filled coaxial cable ionization chamber, which detect g-ray, neutron and charged particles induced by lost particle. It is necessary to measure wide dynamic range of loss intensity for various beam energies. To prevent the activation and heat load by intense beam loss, fast time response of loss signals is required. In this paper, construction and application of loss monitor system are described in detail. Preliminary result of demonstration in the KEK-PS and calibration with cobalt 60 g-ray radiation source are also discussed.