A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kudo, H.

Paper Title Page
WEPKF039 The Vacuum System of Super SOR 1690
 
  • H. Sakai, M. Fujisawa, A. Kakizaki, T. Kinishita, H. Kudo, N. Nakamura, O. Okuda, S. Shibuya, K. Shinoe, H. Takaki
    ISSP/SRL, Chiba
  • K. Kobayashi
    KEK, Ibaraki
  • T. Koseki
    RIKEN/RARF/BPEL, Saitama
  • H. Ohkuma
    JASRI/SPring-8, Hyogo
  • S. Suzuki
    LNS, Sendai
 
  The Super-SOR light source is a Japanese VUV and soft X-ray third-generation synchrotron radiation source, which consists of 1.8GeV storage ring and injector. The beam current is circulated up to 400mA. These accelerators are designed so as to fully meet requirements for top-up injection. In order to realize these operation modes, our vacuum system are required on following conditions. One is to obtain the long lifetime. The other is not to melt the vacuum chamber by irradiating the high flux synchrotron radiation. Finally beam instability is not occurred by large wake fields. We describe the design of the vaccum chamber of Super-SOR and present the recent R&D concerning this system.  
THPKF036 Developments of the FZP Beam Profile Monitor 2350
 
  • N. Nakamura, M. Fujisawa, H. Kudo, H. Sakai, K. Shinoe, H. Takaki, T. Tanaka
    ISSP/SRL, Chiba
  • H. Hayano, T. Muto
    KEK, Ibaraki
 
  A beam profile monitor based on two Fresnel Zone Plates (FZPs) has been developed at the KEK-ATF damping ring. This monitor can perform real-time imaging of the electron beam with an X-ray imaging optics and the synchrotron radiation and measure the horizontal and vertical beam sizes with a high spatial resolution. A clear electron-beam image with the vertical beam size less than 10 microns was already obtained in the early measurements [*]. Thereafter some of the optical elements, the crystal monochromator, X-ray CCD camera and FZP holders, were improved and an X-ray pinhole mask was installed between the two FZPs for reducing the background of X-rays passing through the MZP (the second FZP). Aberrations due to alignment errors of the FZPs were studied with an analytical approach and a ray-tracing method and vibrations of the optical elements were measured in order to estimate their effects on the system performance. In this paper, we will present developments of the beam profile monitor with results of some beam-size measurements.

* K. Iida et al., Nucl. Instrum. Methods A506, p.41-49 (2003); N. Nakamura et al., Proc. of PAC2003, p.530-532