A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Koopman, J.

Paper Title Page
THPLT009 Comparative Transverse Distribution Measurements between the New SPS Rest Gas Ionisation Monitor and the Wire Scanner Monitors. 2475
 
  • C. Fischer, B. Dehning, J. Koopman, D. Kramer, F. Roncarolo
    CERN, Geneva
 
  During the past two years, a new Ionization Profile Monitor was installed and tested in the CERN SPS. In parallel modifications were made on various wire scanner monitors. The aim is to develop instruments performing reliable measurements of transverse beam distributions in the SPS and in the LHC, in order to control the stringent emittance preservation requirements. Measurements made with the two types of monitors were performed under various conditions of LHC type beams, ranging from a pilot bunch up to beams having in the SPS nominal distributions in bunch number, intensity and energy for injection into the LHC. The data provided by the two types of instruments are compared. In the case of discrepancies, an analysis of the possible reasons is made. The cures implemented and the improvements foreseen are discussed.  
THPLT015 Accuracy of Profile Monitors and LHC Emittance Measurements 2493
 
  • F. Roncarolo, G. Arduini, B. Dehning, G. Ferioli, J. Koopman, D. Kramer
    CERN, Geneva
 
  The monitoring and controlling of the beam transverse emittance is essential to allow high luminosity performances in a collider operation. The profile monitors in the LHC injection chain are exploited to determine their precision. A fit strategy was developed to reduce the fitting procedure error and make it negligible compared to instrumentation errors. The method proved to be robust against non-Gaussian tails and can estimate the fraction of non-Gaussian distributed beam intensity. The procedure was applied to the 2003 SPS Wire Scanner measurements with different kind of LHC type beams. The reproducibility of the six available monitors was determined by choosing one as a reference and making synchronized measurements. Several instrumental errors were discovered and corrected to the one per cent level. The demanding small LHC transverse emittances were determined under different beam conditions in terms of intensity, bunch spacing and length in the PS Booster, PS and SPS.