A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kim, E.-S.

Paper Title Page
MOPKF049 Design Study for a 205 MeV Energy Recovery Linac Test Facility at the KEK 420
 
  • E.-S. Kim
    PAL, Pohang
  • K. Yokoya
    KEK, Ibaraki
 
  We present a lattice and beam dynmics analysis for a 200 MeV energy recovery linac test facility at the KEK. The test facility consists of a photocathode rf gun, a 5 MeV injector, a merger, 200 MeV superconducting linac, TBA sections and beam dump line. Beam parameters and optimal optics to relaize the energy recovery linac are described. Simulation results on emittance growth due to HOMs in the superconducting linac and coherent synchrotron radiation in the designed lattice are presented.  
TUPLT093 Tune Survey of Dynamic Apertures for High-brilliance Optics of the Pohang Light Source 1375
 
  • E.-S. Kim
    PAL, Pohang
 
  The PLS storage ring is a 2.5 GeV light source and the dynamic apertures in a lattice for the low emittance in the ring have been investigated by a simulation method. The dynamic apertures that include effects of machine errors and insertion devices were obtained by a tune survey in the simulation. It was also shown that how large are the dynamic aperture compensated after corrections of a CODs. The betatron tune for the operation of the high-brilliance lattice are investigated based on the view point of dynamic apertures obtained from a tune survey.  
WEPLT117 Design of a Third Harmonic Superconducting RF System at PLS 2122
 
  • E.-S. Kim, M.-H. Chun, H.-G. Kim, K.-R. Kim, I.-S. Park, Y.-U. Sohn, J.S. Yang
    PAL, Pohang
  • J.-K. Ahn, J.-S. Cho
    Pusan National University, Pusan
 
  A superconducting third harmonic rf system has been designed in the PLS to raise beam lifetime. Expected beam lifetimes verse beam emittance and operational beam current are presented. A multibunch multiparticle tracking simulation is performed to investigate energy spread, bunch-lengthening and beam instabilities due to the rf cavities. The parameters of the designed rf cavity, designed cryogenic system and estimation of heat load are also presented.