A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Jinamoon, V.

Paper Title Page
MOPKF054 Generation of Femtosecond Electron Pulses 431
 
  • S. Rimjaem, V. Jinamoon, K. Kusoljariyakul, J. Saisut, C. Thongbai, T. Vilaithong
    FNRF, Chiang Mai
  • S. Chumphongphan
    Mae Fah Luang University, Chiang Rai
  • M.W. Rhodes, P. Wichaisirimongkol
    IST, Chiang Mai
  • H. Wiedemann
    SLAC/SSRL, Menlo Park, California
 
  Femtosecond electron pulses have become an interesting tool for basic and applied applications, especially in time-resolved experiments and dynamic studies of biomolecules. Intense, coherent radiation can be generated in a broad far-infrared spectrum with intensities, which are many orders of magnitude higher than conventional sources including synchrotron radiation sources. At the Fast Neutron Research Facility (FNRF), Chiangmai University (Thailand), the SURIYA project has been established with the aim to produce femtosecond pulses utilizing a combination of a S-band thermionic rf-gun and an alpha-magnet as the magnetic bunch compressor. A specially designed rf-gun has been constructed to obtain the optimum beam characteristics for best bunch compression. Simulation results show that the bunch lengths as short as 50 fs rms can be expected at the experimental station. This rf- gun, an alpha-magnet and a 20 MeV linac with beam transport system were installed and are being commissioned to generate femtosecond electron bunches. To measure the bunch length of the electron pulses, a Michelson interferometer will be used to observe the spectrum of coherent FIR transition radiation via optical autocorrelation. The main results of numerical simulations and experimental results will be discussed in this paper.