A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Jamison, S.P.

Paper Title Page
THPLT086 High Temporal Resolution, Single-shot Electron Bunch-length Measurements 2697
 
  • G. Berden, B. Redlich, A.F.G. Van der Meer
    FOM Rijnhuizen, Nieuwegein
  • W.A. Gillespie, A. MacLeod
    UAD, Dundee
  • S.P. Jamison
    Strathclyde University, Glasgow
 
  A new technique, combining the electro-optic detection of the Coulomb field of an electron bunch and the single-shot cross-correlation of optical pulses, is used to provide single-shot measurements of the shape and length of sub-picosecond electron bunches. As in our previous technique [I. Wilke et al., Phys. Rev. Lett. 88, 124801 (2002)], the electric field of the electron beam is encoded electro-optically on an optical pulse. Our earlier measurements, which involved encoding the time profile of the electron bunch on the spectrum of the optical pulse, showed electric field profiles with a FWHM of the order of 1.7 ps. The new method offers a much better time resolution since it avoids the significant measurement artifacts that can arise in our previous (spectral encoding technique due to the coupling between the temporal envelope and spectral content of the optical pulse. The cross-correlation technique has been applied to the measurement of electron bunches in FELIX, showing single bunches of around 500fs FWHM. The resolution is limited primarily by the electro-optic crystal thickness and the relatively low energy of the electrons (50 MeV).