A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Jackson, A.

Paper Title Page
WEPKF029 The Vacuum System of the Australian Synchrotron 1663
 
  • E. Huttel
    FZK-ISS-ANKA, Karlsruhe
  • B. Barg, A. Jackson, B. Mountford
    ASP, Melbourne
 
  A 3 GeV Synchrotron Radiation Source is being built in Melbourne, Australia. The storage ring has a circumference of 216 m and has a 14 fold DBA structure. The vacuum chambers of the storage ring will be made from stainless steel. They consist of a beam chamber (width 70, height 32mm ) connected to an ante chamber, where lumped absorbers and lumped ion pumps are installed. No distributed absorber and pumps are foreseen. The nominal pumping speed of the complete ring is 31 000 l/s. The vacuum chamber of an achromat will be baked ex situ and installed under vacuum. The design of the chamber, the pump configuration and the expected vacuum behaviour will be presented.  
WEPKF030 The Storage Ring Magnets of the Australian Synchrotron 1666
 
  • E. Huttel
    FZK-ISS-ANKA, Karlsruhe
  • B. Barg, A. Jackson, G. LeBlanc
    ASP, Melbourne
  • J. Tanabe
    SLAC, Menlo Park, California
 
  A 3 GeV Synchrotron Radiation Source is being built up in Melbourne, Australia. The storage ring has a circumference of 216 m and has a 14 fold DBA structure. For the storage ring the following magnets are required: 28 gradient dipoles, with B = 1.3 T, B’ = 3.35 T/m, 56 quadrupoles with a gradient of B’ = 18 T/m, 28 quadrupoles with a gradient of 9 T/m, 56 sextupoles with d2B/dr2 = 320 T/m2 and 42 with 150 T/m2. The design of pole faces was done by scaling the SPEAR III pole face to the required gap and bore of the ASP storage ring magnets. The sextupoles will be equipped with coils for horizontal and vertical correction and for a skew quadrupole. The design of the magnets and the calculated magnetic properties will be presented.  
THPKF004 The Australian Synchrotron Project - Update 2257
 
  • A. Jackson
    ASP, Melbourne
 
  The Australian Synchrotron - a 3rd generation synchrotron light facility based on a 3-GeV electron storage ring - is under construction at a site adjacent to Monash University in the Metropolitan District of Melbourne. Site preparation started in September 2003 and project completion is scheduled for March 2007. In this paper we present an overview of the facility and discuss progress to date in meeting this very agressive schedule.