A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Hendriks, J.

Paper Title Page
MOPLT073 Picosecond High Voltage Switching for Pulsed DC Acceleration 722
 
  • J. Hendriks, G.J.H. Brussaard
    TUE, Eindhoven
 
  Laser wakefield acceleration promises the production of high energy electrons from table-top accelerators. External injection of a (low energy) electron bunch into a laser wakefield requires acceleration gradients of the order GV/m. In principle DC acceleration can achieve GV/m acceleration gradients. If high voltage pulses of the order MV can be switched with picosecond precision, the performance of such an accelerator would be greatly enhanced and even multistage DC acceleration would become feasible. Presently risetime and jitter of high voltage pulses in high voltage laser triggered spark gaps are limited to the nanosecond regime by the initial stochastic breakdown process in the gap. A way to overcome this limitation is to create a line focus between the electrodes with an intensity above 1018 W/m2 using a high power femtosecond Ti:Sapphire laser. Because of the instantaneous ionization and high degree of ionization in the plasma channel, picosecond switching precision can be achieved and jitter is reduced significantly. A spark gap test setup with 3 mm interelectrode distance has been build and the first measurements have been done. Femtosecond diagnostics for characterization of the laser induced plasma and electro-optic diagnostics for the high voltage pulse have been developed.