A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Habs, D.

  
Paper Title Page
TUPLT033 RF Design of the MAFF IH-RFQ Power Resonator 1216
 
  • M. Pasini, D. Habs, O. Kester
    LMU, München
  • T. Sieber
    CERN, Geneva
 
  The low energy part of the LINAC of the MAFF facility will be an IH-RFQ cavity with 101.28 MHz resonance frequency. The RF design of the cavity has been completed, including design calculations and model measurements. The RFQ is designed to deliver ions of A/q = 6.5 up to 300 keV/u to be injected into the following LINAC. The structure chosen was an IH type of resonator since it was demontrated to have a better shunt impedance. The required voltage between the electrodes is 70kV and the operation mode is pulsed with a duty cycle of 10%. The structure will be made out from bulk copper in order to improve the shunt impedance and hence to allow not direct cooling on the electrodes. The optimizazion of the several parameters of the structure, and the technique for tuning the voltage distribution are presented in this paper. Measurements with a short model will be shown as well.  
TUPLT034 Beam Dynamics Studies for the Low Energy Section at MAFF 1219
 
  • M. Pasini, D. Habs, O. Kester
    LMU, München
  • A. Bechtold, A. Schempp
    IAP, Frankfurt-am-Main
 
  For the LINAC of the Munich accelerator for fission fragments (MAFF) a new scheme for the low energy section has been proposed in order to fulfill new experimental requirements, such as time spacing between bunches and low longitudinal emittance. The proposed solution consists in a combination of an external multi-harmonic buncher with a "traditional" RFQ with a shaper and an adiabatic bunching section included where the employment of the external buncher is upon request from the experiment. The matching section downstream the RFQ has been re-designed in order to allow room for the installation of a beam cleaning section and to a proper injection into the following DTL. Details about the optics and beam dynamics studies of the low energy section are presented in this paper.  
TUYACH01 Laser-acceleration and Laser-cooling for Ion Beams 54
 
  • M. Roth, A. Blazevic, E. Brambrink, M. Geissel
    TU Darmstadt, Darmstadt
  • P. Audebert
    LULI, Palaiseaux
  • M. Bussmann, D. Habs, U. Schramm, J. Schreiber
    LMU, München
  • R. Clarke, S. Karsch, D. Neely
    CCLRC/RAL, Chilton, Didcot, Oxon
  • J.A. Cobble, J. Fernandez, M. Hegelich, S. Letzring
    LANL, Los Alamos, New Mexico
  • T.E. Cowan, J. Fuchs, A. Kemp, H. Ruhl
    University of Nevada, Reno, Reno, Nevada
  • K. Ledingham, P. McKenna
    Strathclyde University, Glasgow
 
  The acceleration or cooling of particles with lasers has been the subject of growing interest over the last years. Because of the huge difference in mass, the acceleration of ions was so far limited to thermal expansion from laser plasmas, driven by the hot electron temperature. In recent years, due to the development of short-pulse ultra-intense lasers, the manipulation of ions has now become possible. Especially the generation of high quality, intense ion beams from laser solid interaction has attracted large attention and is investigated at many laboratories world-wide. For the first time, intense, directed, low emittance beams of ions have been observed, having several MeV of particle energy right from the source. A wealth of applications including next generation ion sources can be envisioned. The talk will give an overview of the status of laser cooling and ion acceleration including the last experimental results. In addition, an overview of the current and future research activities will be presented.  
Video of talk
Transparencies